
“To err is human, but to really foul things up you need a computer.” - Paul Ehrlich

Testing is a process focused on the goal of finding defects in the system.

What is Test Case?

A Test Case is a set of actions executed to verify a particular feature or functionality of your software
application. Basically, a test case is a document, which has a set of test data, preconditions, expected
results and post conditions, developed for a particular test scenario in order to verify compliance against
a specific requirement. Test Case acts as the starting point for the test execution, and after applying a
set of input values, the application has a definitive outcome and leaves the system at some end point or
also known as execution postcondition.

Test Case Parameters:

Following are the test case parameters, which are considered and included while writing a test case.

 Test Case ID

 Test Scenario

 Test Case Description

 Test Steps

 Prerequisite

 Test Data

 Expected Result

 Test Parameters

 Actual Result

 Environment Information

 Comments

According to IEEE 610, test case includes the following information:

 Pre-conditions

 Set of input values

 Set of expected results

 How to execute the test and check results

 Expected post-conditions

How to write a good test case?

To write a good and effective test case following points must be remembered.

1. Test Cases need to be simple and transparent:

Create test cases that are as simple as possible. They must be clear and concise as the author of test
case may not execute them. Use assertive language like “go to home page”,” enter data”, “click on this”
and so on. This makes the understanding the test steps easy and test execution faster.

2. Create Test Case with End User in Mind

Ultimate goal of any software project is to create test cases that meet customer requirements and is
easy to use and operate. A tester must create test cases keeping in mind the end user perspective

3. Avoid test case repetition.

Do not repeat test cases. If a test case is needed for executing some other test case, call the test case by
its test case id in the pre-condition column

4. Do not Assume

Do not assume functionality and features of your software application while preparing test case. Stick to
the Specification Documents.

5. Ensure 100% Coverage

Make sure you write test cases to check all software requirements mentioned in the specification
document. Use Traceability Matrix to ensure no functions/conditions is left untested.

6. Test Cases must be identifiable.

Name the test case id such that they are identified easily while tracking defects or identifying a software
requirement at a later stage.

7. Implement Testing Techniques

It's not possible to check every possible condition in your software application. Testing techniques help
you select a few test cases with the maximum possibility of finding a defect.

 Boundary Value Analysis (BVA): As the name suggests it's the technique that defines the testing
of boundaries for a specified range of values.

 Equivalence Partition (EP): This technique partition the range into equal parts/groups that tend
to have the same behavior.

 State Transition Technique: This method is used when software behavior changes from one
state to another following particular action.

 Error Guessing Technique: This is guessing/anticipating the error that may arise while
testing.This is not a formal method and takes advantages of a tester's experience with the
application

8. Self cleaning

The test case you create must return the test environment to the pre-test state and should not render
the test environment unusable. This is especially true for configuration testing.

9. Repeatable and self-standing

The test case should generate the same results every time no matter who tests it

10. Peer Review.

After creating test cases, get them reviewed by your colleagues. Your peers can uncover defects in your
test case design, which you may easily miss.

CarMatch Case Study:

Test Case #:
System: CarMatch System
Designed by: Rizwana Noor
Executed by: Sarfraz Ahmad
Short Description: Transfer the payment as a
membership fee of car sharing scheme.

Test Case Name: Process Payment
Subsystem: Pay membership fee
Design Date:
Execution Date: 03-03-2016

Pre Conditions:
1. User must be registered in the system.
2. System must have all information about the user.
3. Car sharer match must be available for user.

Step Action Expected System Response Pass /
Fail

Comment

1 User enter the ATM card
into the machine for
transfer of payment.

System check the card credentials
and prompts the user to enter PIN.

2 User enters the PIN. System checks the card validity and
PIN entered by user with the card
PIN number.

3 User click for the transaction
of amount.

System displays customer accounts
and prompts the customer to
choose a type of transaction.

4 Customer selects Transfer
amount, selects the account
number, and enters the
amount.

System checks the following:

 The account is valid

 The customer has enough
funds in the account,

 checks that the ATM has
enough amount to transfer.

5 Click transfer amount
button.

System displays a message of
“Successful transaction ” and ask
for another transaction.

6 User select “No” option. System ejected the card.

Post Condtions:
1. Amount is deducted from user account.
2. Membership fee transferred to CarMatch system account.

3. User successfully becomes member of car sharing schemes.

