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Montreal, Quebec, Canada, August 18-20, 1995Fuzzy logic and probabilityPetr H�ajekInstitute of Computer Science (ICS)Academy of Sciences182 07 Prague, Czech Republic Llu��s Godo Francesc EstevaInstitut d'Investigaci�o en Intel.ligencia Arti�cial (IIIA)Spanish Council for Scienti�c Research (CSIC)08193 Bellaterra, SpainAbstractIn this paper we deal with a new approachto probabilistic reasoning in a logical frame-work. Nearly almost all logics of probabil-ity that have been proposed in the litera-ture are based on classical two-valued logic.After making clear the di�erences betweenfuzzy logic and probability theory, here wepropose a fuzzy logic of probability for whichcompleteness results (in a probabilistic sense)are provided. The main idea behind thisapproach is that probability values of crisppropositions can be understood as truth-values of some suitable fuzzy propositions as-sociated to the crisp ones. Moreover, sug-gestions and examples of how to extend theformalism to cope with conditional probabil-ities and with other uncertainty formalismsare also provided.1 IntroductionDiscussions about the relation between fuzzy logic andprobability are still numerous and sometimes rathercontroversial. In particular, using fuzzy logic to rea-son in a probabilistic way may be a priori consideredas a \dangerous mixture" of both formalisms. In thissense, the aim of this paper is twofold. First to stressthe di�erences between fuzzy logic and probability the-ory, making clear that they are di�erent formalismsaddressing di�erent problems and using di�erent tech-niques. Second to show how it is possible to con-sistently use them together by proposing a new andmeaningful approach to probabilistic reasoning basedon fuzzy logic. The topic of relating probability andlogic is not by far new. A number of logics of prob-ability have been proposed in the literature, as thosein [Scott and Kraus, 1966; H�ajek and Havr�anek, 1978;Gaifman and Snir, 1982; Nilsson, 1986; Bacchus, 1990;Halpern, 1989; Wilson and Moral, 1994]. But all ofthem except for [H�ajek and Havr�anek, 1978] are basedon classical two-valued logic. Here we propose a propo-sitional fuzzy logic of probability for which complete-

ness results are provided. The main idea behind thisapproach is that probability values of crisp proposi-tions can be understood as truth-values of some suit-able fuzzy propositions associated to the crisp ones.Before going to the technical details in next sections,and in order to avoid misunderstandings, we start byaddressing and clarifying the main notions involved inthis paper.Main di�erence between fuzzy logic and prob-ability theoryIn our opinion any serious discussion on the relationbetween fuzzy logic and probability must start by mak-ing clear the basic di�erences. Admitting some simpli-�cation, we consider that fuzzy logic is a logic of vague,imprecise notions and propositions, propositions thatmay be more or less true. Fuzzy logic is then a logicof partial degrees of truth. On the contrary, probabil-ity deals with crisp notions and propositions, proposi-tions that are either true or false; the probability of aproposition is the degree of belief on the truth of thatproposition. If we want to consider both as uncertaintydegrees we have to stress that they represent very dif-ferent sorts of uncertainty (Zimmermann calls themlinguistic and stochastic uncertainty, respectively). Ifwe prefer to reserve the word \uncertainty" to referto degrees of belief, then clearly fuzzy logic does notdeal with uncertainty at all. The main di�erence liesin the fact that degrees of belief are not extensional(truth-functional), e.g. the probability of p ^ q is nota function of the probability of p and the probabil-ity of q, whereas degrees of truth of vague notionsadmit truth-functional approaches (although they arenot bound to them). Formally speaking, fuzzy logicbehaves as a many-valued logic, whereas probabilitytheory can be related to a kind of two-valued modallogic (cf. e.g. [H�ajek, 1993] or [H�ajek, 1994] for moredetails, also [Klir and Folger, 1988]). Thus, fuzzy logicis not a \poor man's probability theory", as some peo-ple claim.Comparing fuzzy logic and probabilityNevertheless, relationships between fuzzy logic and
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Montreal, Quebec, Canada, August 18-20, 1995probability theory have been studied. They have notonly been compared but also combined. First of all, werefer to [Zadeh, 1986]; even if the title of Zadeh's pa-per ends with the words \a negative view", he is ratherpositive in combining fuzziness and probability by sug-gesting a de�nition of the probability of a fuzzy propo-sition. Another important paper is [Dubois and Prade,1993], in which the authors extensively survey the lit-erature concerning the relationship between fuzzy setsand probability theories; again, besides pointing outthe gaps between them, the authors build bridges be-tween both theories, stressing in this sense the impor-tance of possibility theory. Our paper is an attemptto contribute further to this bridge building.Probability is ground on classical equivalenceWe restrict ourselves to propositional calculus; i.e. for-mulas are built from propositional variables and con-nectives (negation :, implication ! and possibly oth-ers. We shall consider only calculi in which other con-nectives are de�nable from negation and implication.Formulas can be endowed with various semantics,among them the classical (boolean, two-valued): thereare just two truth values 0 and 1, each evaluation eof propositional variables by zeros and ones extendsuniquely to an evaluation of all formulas using clas-sical truth tables. Two formulas ';  are classicallyequivalent if e(') = e( ) for any boolean evaluatione. The second semantics of our interest is that of Lukasiewicz's in�nite-valued calculus: truth values arereal numbers from the unit interval [0; 1], and truthfunctions are :x = 1� xx! y = min(1; 1� x+ y)(we take the freedom of denoting a truth functionby the same symbol as its corresponding connective).Under this second semantics, ';  are  L-equivalent ife(') = e( ) for any real-valued  Lukasiewicz evalu-ation e. Neglecting the di�erence between classicaland many-valued equivalence of formulas has been thesource of known misunderstandings concerning fuzzylogic. Clearly, if two formulas are  L-equivalent thenthey are classically equivalent, but the converse doesnot hold.On the other hand, a (�nitely additive) probability onformulas is a mapping P assigning to each formula' a real number P (') in [0; 1] preserving classicalequivalence (i.e. if ';  are classically equivalent thenP (') = P ( )) and satisfying the well known condi-tions: P (true) = 1; P (false) = 0, and if '^ is classi-cally equivalent to false then P ('_ ) = P (')+P ( ).Here true is a classical identically true formula, e.g.p ! p, false is :true, ' _  is (' !  ) !  (this isa possible de�nition of disjunction from implication)and '^ is :(:'_: ). In other words, a probabilityis in fact a function on the Boolean algebra of classesof classically equivalent formulas.

Can the probability of a formula be under-stood as the truth degree of the same for-mula ?Clearly not in the truth-functional case: just becauseprobabilities are not truth-functional. However thisis possible in the non-truth functional case. Let usmention for instance the paper [Gerla, 1994], where theauthor exhibits an abstract, non-truth functional fuzzylogical system whose set of interpretations consists ofall probabilities on the set of all formulas and presentsa complete deductive system for this.Can we understand the probability of a for-mula as the truth degree of another one ?Our claim is that we can when the other formula ex-presses something like that the former one is \prob-able". This is the heart of our approach. Probabil-ity preserves classical equivalence and therefore \un-derstands" formulas as crisp propositions. But prob-ability is just a variable (like pressure, temperature,etc.) and we may make fuzzy assertions on it: if ' isany formula we may say \' is probable" or \probabil-ity of ' is high", and these are typical fuzzy proposi-tions. Such approach was suggested in [H�ajek and Har-mancov�a, 1994]; fuzzy propositions about probabilitiesare also discussed in [Zimmermann, 1991]. Our aim isto describe a fuzzy theory in the frame of the truth-functional  Lukasiewicz-Pavelka's logic which naturallyrelates to probability theory. Notice that our approachwill clearly distinguish between propositions like \('is probable) and ( is probable)" on the one hand and\(' ^  ) is probable" in the other.Fuzzy theories and their logicFollowing Pavelka [Pavelka, 1979], we de�ne a fuzzytheory to be just a fuzzy set of formulas: if T is a fuzzytheory and T (') = x (denoting that the membershipdegree of ' to T is x) then ' is an axiom to the degreex. Semantics is given by a set Sem of fuzzy sets offormulas; each element M of Sem is understood as aninterpretation of the language, i.e. M (') = x is readas \' is true in M to the degree x". M is a model ofT if for any ', M (') � T ('), i.e. each formula is atleast as much true in M as the T -degree of axiomnessdemands.In a truth-functional approach, Sem is the set of allevaluations of formulas obtained from evaluations ofpropositional variables by means of some particulartruth functions, e.g. the  Lukasiewicz truth functions!;: above mentioned. But let us stress that otherchoices which lead to non-truth functional systems arealso possible. In any case one should try to exhibitsome notion of proof and try to prove some complete-ness result.The paper is organized as follows. After this intro-duction we survey in Section 2 the Rational Pavelka's
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Montreal, Quebec, Canada, August 18-20, 1995Logic { a generalization of  Lukasiewicz's logic discov-ered by Pavelka and simpli�ed by H�ajek. In Section 3we present our fuzzy theory of probability and prove acompleteness result. In Section 4 we comment on pos-sible extensions and uses of the proposed approach.Finally, Section 5 contains some discussion on openproblems and concluding remarks.2 Rational Pavelka's Logic Lukasiewicz's in�nitely-valued logic only allows us toprove 1-tautologies, but in fuzzy logic we are interestedin inference from partially true assumptions, admittingthat the conclusion will also be partially true. RationalPavelka's Logic RPL is an extension of  Lukasiewicz'sin�nitely-valued logic admitting graded formulas andgraded proofs. It is described in a simple formalizationin [H�ajek, 1995]. Since the approach described in thispaper strongly relies on this logic, here we present themain notions and properties of it.2.1 Formulas are built from propositional variablesp1; p2; : : : and truth constants r for each rational r 2[0; 1] using connectives ! and :. Other connectivesare de�ned from these ones. In particular, among oth-ers, Pavelka de�nes two conjunctions and two disjunc-tions exactly as in  Lukasiewicz's logic, i.e.' &  stands for :('! : )' _  stands for :'!  ' _  stands for ('!  ) !  ' ^  stands for :(:' _ : )'$  stands for ('!  ) ^ ( ! ')Taking into account the  Lukasiewicz's truth functionscorresponding to ! and :, it is easy to check thatthe truth functions for the above connectives are thefollowing ones:r & s = max(0; r+ s� 1)r _ s = min(r + s; 1)r _ s = max(r; s)r ^ s = min(r; s)r$ s = min(1� r + s; 1� s + r)An evaluation of atoms is now a mapping of atomicpropositions into [0; 1]. Such mappings extenduniquely to an evaluation of all formulas respectingthe above truth functions.A graded formula is a pair ('; r) where ' is a formulaand r 2 [0; 1] is rational. Such a formula is understoodas saying that \the truth value of ' is at least r".Logical axioms are:(i) axioms of  Lukasiewicz's logic (all in degree 1)'! ( ! ')('!  ) ! (( ! �) ! ('! �))(:'! : ) ! ( ! ')(('!  ) !  ) ! (( ! ') ! ')

(ii) bookkeeping axioms: (for arbitrary rational r; s 2[0; 1]): r in degree r,:r$ :r in degree 1,r! s$ (r! s) in degree 1: 1Deduction rules are:(i) modus ponens: from ('; r) and (' !  ; s) derive( ; r & s)(ii) truth constant introduction: from ('; s) derive(r ! '; r! s).We de�ne a graded proof from a fuzzy theory T as asequence of graded formulas('1; r1); : : : ; ('n; rn)such that for each i; ('i; ri) is either a logical axiom(i.e. 'i is a logical axiom in degree ri) or ('i; ri) isan axiom of T (i.e. T ('i) = ri) or ('i; ri) followsfrom some previous member(s) of the sequence by adeduction rule. We say that T proves ' in degree r,denoted T ` ('; r), if there is a graded proof fromT whose last element is ('; r). The provability degreeof ' in T is j' jT = supfr j T ` ('; r)g. The truthdegree of ' in T is k'kT = inffe(') j e evaluation, emodel of Tg. Notice that both k'kT and j' jT may beirrational.2.2 Completeness theorem for RPL. For each Tand ', j' jT = k'kTi.e. the provability degree equals to the truth degree.3 A fuzzy logic of probabilityIn this section we are going to de�ne a fuzzy theory inRPL, that we shall call FP , directly related to prob-ability theory. We start with a set of propositionalvariables p; q; : : : and the set of all propositional for-mulas built from them. Since we shall be interested inprobabilities of these formulas, and hence in classicalequivalence, we shall only use for them one conjunctionand one disjunction, say ^ and _. We call these for-mulas crisp formulas. As suggested in [H�ajek and Har-mancov�a, 1994], we associate with each crisp formula' a new propositional variable f', which will be readas \' is PROBABLE", or \PROBABILITY OF 'is HIGH". This is understood as a fuzzy proposi-tion, and given a probability P , we are free to de�nee(f') = P ('), i.e. assign the probability value P (')as the truth-value of f'. We may call the variables ofthe form f' fuzzy propositional variables and they willbe taken as the propositional variables of our fuzzytheory FP . Next we precisely de�ne the FP theoryand show it is probabilistically meaningful.1Examples of bookkeeping axioms: for r = 0:4 and s =0:3 we get 0:6$ :0:4 and 0:9$ (0:4! 0:3).
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Montreal, Quebec, Canada, August 18-20, 19953.1 Syntax of FP .FP-formulas are just RPL-formulas built from fuzzy propositional variables, i.e.formulas built from variables of the form f' using con-nectives. The Axioms of FP are those of RPL (seeabove) plus:(FP1) (f'; 1) for ' being an axiom of classical propo-sitional logic (the obvious three schemes),(FP2) (f'! ! (f' ! f ); 1) for all ';  ,(FP3) (f:' $ :f'; 1) for each ', and(FP4) (f'_ $ [(f' ! f'^ ) ! f ]; 1) for each ';  .Notice that (FP3) and (FP4) axioms are direct trans-lations of two of the well-known axioms of probabil-ity, namely the relationship between the probabilityof one proposition and its negation and the �nitelyadditivity property. Axioms (FP1) and (FP2) guar-antee the preservation of classical equivalence and themonotonicity as it is proved in the next lemma andcorollary.3.2 Lemma. If ' is a boolean tautology (i.e. provablein boolean propositional calculus) then FP proves f'in degree 1.3.3. Corollary. For any \crisp" formulas ' and  we have:(1) If ' !  is a boolean tautology then FP provesf' ! f in degree 1.(2) Hence if ' $  is a boolean tautology then FPproves f' $ f in degree 1.(3) FP proves f'^ ! f' in degree 1.Next we show that FP has exactly the intended se-mantics , that is, models of FP are de�ned by proba-bility functions on the set of crisp formulas.3.4 Theorem. An evaluation e of atomic FP -formulas is a model of the theory FP if, and only if, themapping P de�ned on crisp formulas by P (') = e(f')is a �nitely additive probability on crisp formulas.Proof.(1) Let e be a model of FP and de�ne P (') = e(f')for all '. If ' is classically equivalent to  then FP `(f' $ f ; 1) by (2) of Corollary 3.3, hence e(f' $f ) = 1; e(f') = e(f ) and therefore P (') = P ( );thus P preserves logical equivalence. Clearly, FP `(ftrue; 1) and FP ` (:ffalse; 1), hence P (true) = 1and P (false) = 0. Also P (:') = :P (') is clear from(FP3). Now take arbitrary ';  and put a = P (' _ ); b = P ('); c = P ( ); d = P (' ^  ). By (FP4),a = (b ! d) ! c and b � d (by Corollary 3.3); thusa = (1 � b + d) ! c. Now  ! (' ! (' ^  ))is a Boolean tautology, hence FP ` (f ! (f' !f'^ ); 1) and hence c = e(f ) � e(f' ! f'^ ) =1�b+d; thus a = (1�b+d) ! c = 1�(1�b+d)+c =

b+ c� d. Thus P is a probability.(2) Conversely, assume that P is a probability on crispformulas and put e(f') = P ('). We verify that eassigns 1 to each axiom of FP . Clearly, if ' is anaxiom of classical logic then ' is a Boolean tautologyand hence e(f') = P (') = 1. This veri�es (FP1). Toverify (FP2) we show P (' !  ) � (P (') ! P ( )).Put now P ('^  ) = a; P ('^ : ) = b; P (:'^  ) =c; P (:' ^ : ) = d; then P ('!  ) = 1� b, whereas(P (') ! P ( ) = 1 � (a + b) + (a + c) = 1 � b + c �P (' !  ) as desired. Under the present meaning ofa; b; c; d we have e(f'_ ) = P (' _  ) = a+ b+ c, ande((f' ! f'^ ) ! f ) = ((a + b) ! a) ! (a + c) =(1 � b) ! (a + c) = a + b + c. This veri�es (FP4);(FP3) is evident. 2In [H�ajek and Harmancov�a, 1994] the authors raisedthe question whether it could be possible for a fuzzytheory to have an axiomatization probabilisticallycomplete in some sense. Here we give a positive an-swer.3.5 De�nition. A fuzzy theory T is stronger than FPif for each formula � in the language of FP , T (�) �FP (�) (i.e. all the axioms (FP1) : : : (FP4) get thevalue 1 in T ). A probability P on crisp formulas is amodel of T if the corresponding evaluation eP of atomsof FP , de�ned as eP (f') = P ('), is a model of T .3.6 Corollary. Let T be a fuzzy theory stronger thanFP . Then, for each FP-formula �,j � jT= inffeP (�) j P probability; P model of Tg:This follows directly from completeness of RPL andfrom theorem 3.4.3.7 Corollary. (Probabilistic Completeness forFP ) In particular, for each crisp formula ',j f' jT= inffP (') j P probability; P model of Tg;1� j f:' jT= supfP (') j P probability; P model of Tg:This result tells us that if T ` (f'; r) then for everyprobability P which is a model of T , P (') � r; andalso that if T 6` (f'; r) (i.e. there is no T -proof of' to the degree r) then for each r0 > r there existsa probability P which is a model of T and such thatP (') < r0.3.8 Remarks. Axioms (FP1) and (FP2) could bereplaced by other two (less elegant) axioms, namelyby:(FP10) (ftrue; 1), and(FP20) (f' ! f ; 1), for any ' and  such that '!  is a boolean tautology.Notice that (FP2') is a direct expression of the mono-tonicity of probability measures with respect to set
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Montreal, Quebec, Canada, August 18-20, 1995inclusion. Notice also that (FP4) may be replaced inturn by the following axiom:(FP40) ((f'_ ! f') $ (f ! f'^ ); 1)which is another equivalent expression for the additiv-ity property. As a �nal remark, let us mention alsothat in FP is not obvious how to represent statementsabout strict lower or upper bounds of probability.3.9 Example. We present here an example of a proofin FP , in particular we show how to prove that f' $(f'^ _ f'^: ) is a theorem of FP , correspondingto the well known property of probability functionsstating that P (') = P (' ^  ) + P (' ^ : ). Clearly,FP ` (f' $ f('^ )_('^: ) ; 1);by (FP 4), writing '1 for '^ and '0 for '^: , weget the following chain of deductions:FP ` (f'1_'0 $ ((f'1 ! f'1^'0) ! f'0); 1);FP ` (f'1^'0 $ 0; 1);FP ` ((f'1 ! f'1^'0) $ :f'1; 1);FP ` (f'1_'0 $ (:f'1 ! f'0); 1);FP ` (f'1_'0 $ (f'1 _ f'0); 1);FP ` (f' $ (f'^ _ f'^: ); 1)This completes the example.4 Possible extensionsThe approach described so far is suitable for furtherdeveloping at least along two main streams. On theone hand, we obviously need to extend RPL withnew connectives if we want to deal with conditionalprobabilities. This is addressed in subsection (a). Onthe other hand, the proposed approach can be easilyadapted to cope with other uncertainty models, themain point being to replace the characteristic axiomsof probability theory in FP by the corresponding ax-ioms characterizing other uncertainty models. As amatter of example, we shall provide in subsection (b)the fuzzy theory FN corresponding to Possibility The-ory and prove its completeness.(a) Dealing with conditional probabilitiesThe �rst idea in extending the framework presented inthe previous section to deal with conditional probabil-ities is to look for the possibility of expressing con-ditional probabilitiy values as truth-values of fuzzyformulas, just as it has done in Section 3 for uncon-ditional probabilities. Obviously, to do so, we needto introduce new connectives in the language, 
 and
!, corresponding to the product conjunction and itsresiduated implication (division) respectively. Then,for instance, P ( j ') � � could be expressed as (f'
! f'^ ; �). This approach has technical problemsdue to the lack of continuity of the truth function as-sociated to 
! (see section 5). However, assuming

that P (') > 0, one can always express the inequal-ity P ( j ') � � as P (' ^  ) � �P ('). Therefore,as a �rst step, we can focus on extending the RationalPavelka's Logic with only the new conjunction connec-tive 
, having the product as its corresponding truthfunction. This is done below by de�ning the fuzzytheory RPL+, the extension of RPL, as follows.4.1 Syntax. Formulas of RPL+ are built as in RPL,just adding the connective 
 to the language. Logicalaxioms of RPL+ are those of RPL plus- monotonicity:('!  ) ! (('
 �) ! ( 
 �))('!  ) ! ((�
 ') ! (�
  ))- bookeeping: r 
 s$ r � sall of them in degree 1.This extension can be proved to be complete w.r.t. theabove semantics, that is, the following theorem holds.4.2 Completeness theorem for RPL+. For eachtheory T and formula ' of RPL+,j' jT = k'kT ;i.e. in RPL+ the provability degree also equals to thetruth degree.Now we are ready to de�ne the probabilistic fuzzy the-ory FP+ analogously to FP , just by replacing the ax-ioms of RPL by those of RPL+. In the language ofFP+ we are actually able to express statements aboutconditional probabilities by means of formulas like(�
 f' ! f'^ ; 1)expressing that the conditional probability of  given' is not smaller than �, provided that the probabilityof ' is known to be greater than 0. This is formalizedby next theorem.4.3 Theorem. Let T be a theory stronger than FP+and let ' a crisp proposition such that j' jT > 0. Thenj�
 f' ! f'^ jT = 1 if and only if, for each proba-bility P which is a model of T , it is the case thatP ( j ') � �.Proof. If j�
 f' ! f'^ jT = 1 then by completenesswe have that eP (� 
 f' ! f'^ ) = 1 for any prob-ability P model of T, i.e. � � P (') � P (' ^  ), andhence P ( j ') � �, provided that P (') > 0, but thisis guaranteed by having j' jT > 0.2Moreover, statements about conditional independencesaying that for instance ' and  are independent given� could be also expressed by means of axioms extend-ing FP+ as((f'^ ^� 
 f�) $ (f ^� 
 f'^�); 1)
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 f:�) $ (f ^:� 
 f'^:�); 1)Further results about the probabilistic completeness ofFP+ will deserve future attention.(b) A fuzzy logic for possibility theoryAs an example of the fact that fuzzy logic is also a suit-able framework to describe other uncertainty modelsdi�erent from probability theory, we present below thefuzzy theory FPS to reason with formulas valued withpossibility and necessity degrees. Possibility theory, asuncertainty model, has been widely developed from alogical point of view under the so-called PossibilisticLogic (see e.g. [Dubois et al., 1994] for an extensivesurvey). Possibilistic logic obviously does not need thewhole machinery we are going to use, but neverthelesswe still think it can be interesting for exemplifying pur-poses. Thus, now we are interested in associating toeach crisp formula ' a fuzzy formula f', which will beread as \' is NECESSARY " or \' is CERTAIN",in such a way that the truth-degree of f' represents thenecessity degree (in the sense of necessity measures) of', and therefore the truth degree of :f:' representsthe possibility degree of '.4.4 Syntax of FPS. FPS-formulas are just FP -formulas, i.e. formulas built from fuzzy propositionalvariables of the form f' using connnectives. Axiomsof FPS are those of RPL (see section 3) plus:(FPS1) (f'; 1) for ' being an axiom of classical propo-sitional logic, ( = (FP1))(FPS2) (f'! ! (f' ! f ); 1) for all ';  , ( = (FP2))(FPS3) (:ffalse; 1), and(FPS4) ((f' ^ f ) $ f'^ ; 1).Notice that, if we denote :f:' by g', we would getdual axioms corresponding to possibility measures, inparticular (FPS1) and (FPS3) are also valid for propo-sitional variables of type g', and (FPS4) would beequivalently expressed as(FPS40) ((g' _ g ) $ g'_ ; 1)Caution: Note that the obvious analogon of (FPS2)for possibilities is not sound.Analogous results to those for FP can be proved forFPS.4.5 Lemma. For any \crisp" formulas ' and  wehave:(1) If ' is a boolean tautology (i.e. provable in booleanpropositional calculus) then FPS proves f' in degree1.(2) If ' is a boolean antitautology (i.e. :' is provablein boolean propositional calculus) then FPS proves:f' in degree 1.

(3) If '!  is a boolean tautology then FPS provesf' ! f in degree 1.(4) If '$  is a boolean tautology then FPS provesf' $ f in degree 1.4.6 Theorem. An evaluation e of atomic FPS-formulas is a model of the theory FPS i� the map-ping N de�ned on crisp formulas by N (') = e(f') isa necessity measure on crisp formulas, i.e. N (True) =1; N (False) = 0 and N (' ^  ) = min(N ('); N ( )).Proof.We only prove that if N is a necessity on crisp formulasthen the evaluation de�ned as e(f') = N (') assigns 1to axiom (FPS 2). The rest is straightforward. Thus,we have to prove that Nec(' !  ) � (Nec(') !Nec( )). By cases:- if Nec(') � Nec( ) it is trivial.- suppose then that Nec(') > Nec( ). SinceNec( ) = min(Nec( _'); Nec( _:') and Nec( _') � Nec(') > Nec( ) the only possibility is thatNec( ) = Nec( _ :'), and therefore (Nec(') !Nec( )) � Nec( ) = Nec( _ :'), which ends theproof.24.7 De�nition. A fuzzy theory T is stronger thanFPS if for each formula � in the language of FPS,T (�) � FPS(�) (i.e. all the axioms (FPS 1); : : :(FPS 4) get the value 1 in T ). A necessity function Non crisp formulas is a model of T if the correspondingevaluation eN of atoms of FPS de�ned as eN (f') =N (') is a model of T .The completeness result for FPS, analogous again tothat for FP is given in the following theorem.4.8 Theorem. Let T be a fuzzy theory stronger thanFPS. Then, for each FPS-formula �,j � jT= inffeN (�) j N necessity; N model of Tg:In particular, for each crisp formula ' we have:j f' jT= inffN (') j N necessity; N model of Tg:Notice that the well-known possibilistic resolutionprinciple for necessity valued clauses, saying that from\N (' _  ) � �1" and \N (:' _ �) � �2"it can be inferrred\N ( _ �) � �1 ^ �2",is now a derivable inference rule in FPS. Namely,since [(' _ ) ^ (:' _ �)] ! ( _ �) is a boolean tau-tology, by lemma 4.5(3), FPS proves f('_ )^(:'_�) !f _� with degree 1. By (FPS4), FP proves also(f'_ ^ f:'_�) ! f _� with degree 1. Now theproof easily comes by modus ponens taking into ac-count that the completeness of RPL allows us to
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