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Abstract

In this paper we deal with a new approach
to probabilistic reasoning in a logical frame-
work. Nearly almost all logics of probabil-
ity that have been proposed in the litera-
ture are based on classical two-valued logic.
After making clear the differences between
fuzzy logic and probability theory, here we
propose a fuzzy logic of probability for which
completeness results (in a probabilistic sense)
are provided. The main idea behind this
approach is that probability values of crisp
propositions can be understood as truth-
values of some suitable fuzzy propositions as-
sociated to the crisp ones. Moreover, sug-
gestions and examples of how to extend the
formalism to cope with conditional probabil-
ities and with other uncertainty formalisms
are also provided.

1 Introduction

Discussions about the relation between fuzzy logic and
probability are still numerous and sometimes rather
controversial. In particular, using fuzzy logic to rea-
son in a probabilistic way may be a priori considered
as a “dangerous mixture” of both formalisms. In this
sense, the aim of this paper is twofold. First to stress
the differences between fuzzy logic and probability the-
ory, making clear that they are different formalisms
addressing different problems and using different tech-
niques. Second to show how it is possible to con-
sistently use them together by proposing a new and
meaningful approach to probabilistic reasoning based
on fuzzy logic. The topic of relating probability and
logic is not by far new. A number of logics of prob-
ability have been proposed in the literature, as those
in [Scott and Kraus, 1966; Hajek and Havranek, 1978;
Gaifman and Snir, 1982; Nilsson, 1986; Bacchus, 1990;
Halpern, 1989; Wilson and Moral, 1994]. But all of
them except for [Hijek and Havranek, 1978] are based
on classical two-valued logic. Here we propose a propo-
sitional fuzzy logic of probability for which complete-

08193 Bellaterra, Spain

ness results are provided. The main idea behind this
approach is that probability values of crisp proposi-
tions can be understood as truth-values of some suit-
able fuzzy propositions associated to the crisp ones.

Before going to the technical details in next sections,
and in order to avoid misunderstandings, we start by
addressing and clarifying the main notions involved in
this paper.

Main difference between fuzzy logic and prob-
ability theory

In our opinion any serious discussion on the relation
between fuzzy logic and probability must start by mak-
ing clear the basic differences. Admitting some simpli-
fication, we consider that fuzzy logic is a logic of vague,
imprecise notions and propositions, propositions that
may be more or less true. Fuzzy logic is then a logic
of partial degrees of truth. On the contrary, probabil-
ity deals with crisp notions and propositions, proposi-
tions that are either true or false; the probability of a
proposition is the degree of belief on the truth of that
proposition. If we want to consider both as uncertainty
degrees we have to stress that they represent very dif-
ferent sorts of uncertainty (Zimmermann calls them
linguistic and stochastic uncertainty, respectively). If
we prefer to reserve the word “uncertainty” to refer
to degrees of belief, then clearly fuzzy logic does not
deal with uncertainty at all. The main difference lies
in the fact that degrees of belief are not extensional
(truth-functional), e.g. the probability of p A ¢ is not
a function of the probability of p and the probabil-
ity of ¢, whereas degrees of truth of vague notions
admit truth-functional approaches (although they are
not bound to them). Formally speaking, fuzzy logic
behaves as a many-valued logic, whereas probability
theory can be related to a kind of two-valued modal
logic (cf. e.g. [Hajek, 1993] or [Héjek, 1994] for more
details, also [Klir and Folger, 1988]). Thus, fuzzy logic
is not a “poor man’s probability theory”, as some peo-
ple claim.

Comparing fuzzy logic and probability

Nevertheless, relationships between fuzzy logic and
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probability theory have been studied. They have not
only been compared but also combined. First of all, we
refer to [Zadeh, 1986); even if the title of Zadeh’s pa-
per ends with the words “a negative view”, he is rather
positive in combining fuzziness and probability by sug-
gesting a definition of the probability of a fuzzy propo-
sition. Another important paper is [Dubois and Prade,
1993], in which the authors extensively survey the lit-
erature concerning the relationship between fuzzy sets
and probability theories; again, besides pointing out
the gaps between them, the authors build bridges be-
tween both theories, stressing in this sense the impor-
tance of possibility theory. Our paper is an attempt
to contribute further to this bridge building.

Probability is ground on classical equivalence

We restrict ourselves to propositional calculus; i.e. for-
mulas are built from propositional variables and con-
nectives (negation —, implication — and possibly oth-
ers. We shall consider only calculi in which other con-
nectives are definable from negation and implication.

Formulas can be endowed with various semantics,
among them the classical (boolean, two-valued): there
are just two truth values 0 and 1, each evaluation e
of propositional variables by zeros and ones extends
uniquely to an evaluation of all formulas using clas-
sical truth tables. Two formulas @, are classically
equivalent if e(¢) = e(y) for any boolean evaluation
e. The second semantics of our interest is that of
Lukasiewicz’s infinite-valued calculus: truth values are
real numbers from the unit interval [0, 1], and truth
functions are

1—2
min(l,1 —z+y)

it
L — Y

(we take the freedom of denoting a truth function
by the same symbol as its corresponding connective).
Under this second semantics, @, ¢ are L-equivaelent if
e(p) = e(y) for any real-valued Lukasiewicz evalu-
ation e. Neglecting the difference between classical
and many-valued equivalence of formulas has been the
source of known misunderstandings concerning fuzzy
logic. Clearly, if two formulas are L-equivalent then
they are classically equivalent, but the converse does

not hold.

On the other hand, a (finitely additive) probability on
formulas is a mapping P assigning to each formula
¢ a real number P(¢) in [0,1] preserving classical
equivalence (i.e. if ¢, are classically equivalent then
P(p) = P(9)) and satisfying the well known condi-
tions: P(true) =1, P(false) = 0, and if p A% is classi-
cally equivalent to false then P(pVy) = P(p)+P(%).
Here true is a classical identically true formula, e.g.
p — p, false is —true, ¢ V9 is (¢ — 9) — 1 (this is
a possible definition of disjunction from implication)
and @ Ay is (- V ). In other words, a probability
is in fact a function on the Boolean algebra of classes
of classically equivalent formulas.
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Can the probability of a formula be under-
stood as the truth degree of the same for-
mula ?

Clearly not in the truth-functional case: just because
probabilities are not truth-functional. However this
is possible in the non-truth functional case. Let us
mention for instance the paper [Gerla, 1994], where the
author exhibits an abstract, non-truth functional fuzzy
logical system whose set of interpretations consists of
all probabilities on the set of all formulas and presents
a complete deductive system for this.

Can we understand the probability of a for-
mula as the truth degree of another one ?

Our claim is that we can when the other formula ex-
presses something like that the former one is “prob-
able”. This is the heart of our approach. Probabil-
ity preserves classical equivalence and therefore “un-
derstands” formulas as crisp propositions. But prob-
ability is just a variable (like pressure, temperature,
etc.) and we may make fuzzy assertions on it: if ¢ is
any formula we may say “p is probable” or “probabil-
ity_of ¢ is high”, and these are typical fuzzy proposi-
tions. Such approach was suggested in [Hijek and Har-
mancové, 1994]; fuzzy propositions about probabilities
are also discussed in [Zimmermann, 1991]. Our aim is
to describe a fuzzy theory in the frame of the truth-
functional Lukasiewicz-Pavelka’s logic which naturally
relates to probability theory. Notice that our approach
will clearly distinguish between propositions like “(¢
is probable) and (v is probable)” on the one hand and
“(¢ A %) is probable” in the other.

Fuzzy theories and their logic

Following Pavelka [Pavelka, 1979], we define a fuzzy
theory to be just a fuzzy set of formulas: if T is a fuzzy
theory and T(p) = z (denoting that the membership
degree of ¢ to T' is z) then ¢ is an axiom to the degree
z. Semantics is given by a set Sem of fuzzy sets of
formulas; each element M of Sem is understood as an
interpretation of the language, i.e. M(p) = z is read
as “p is true in M to the degree z”. M is a model of
T if for any ¢, M(p) > T(p), i.e. each formula is at
least as much true in M as the T-degree of axiomness
demands.

In a truth-functional approach, Sem is the set of all
evaluations of formulas obtained from evaluations of
propositional variables by means of some particular
truth functions, e.g. the Lukasiewicz truth functions
—, 1 above mentioned. But let us stress that other
choices which lead to non-truth functional systems are
also possible. In any case one should try to exhibit
some notion of proof and try to prove some complete-
ness result.

The paper is organized as follows. After this intro-
duction we survey in Section 2 the Rational Pavelka’s
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Logic — a generalization of Lukasiewicz’s logic discov-
ered by Pavelka and simplified by Hajek. In Section 3
we present our fuzzy theory of probability and prove a
completeness result. In Section 4 we comment on pos-
sible extensions and uses of the proposed approach.
Finally, Section 5 contains some discussion on open
problems and concluding remarks.

2 Rational Pavelka’s Logic

Lukasiewicz’s infinitely-valued logic only allows us to
prove 1-tautologies, but in fuzzy logic we are interested
in inference from partially true assumptions, admitting
that the conclusion will also be partially true. Rational
Pavelka’s Logic RPL is an extension of Lukasiewicz’s
infinitely-valued logic admitting graded formulas and
graded proofs. It is described in a simple formalization
in [Héjek, 1995). Since the approach described in this
paper strongly relies on this logic, here we present the
main notions and properties of it.

2.1 Formulas are built from propositional variables
P1, D2, - .. and truth constants 7 for each rational r €
[0,1] using connectives — and —. Other connectives
are defined from these ones. In particular, among oth-
ers, Pavelka defines two conjunctions and two disjunc-
tions exactly as in Lukasiewicz’s logic, i.e.

p & stands for —(p — %)

o VY stands for —p — P

VY stands for (¢ — 1) -9
@AY stands for (- V %)
@1 stands for (o — P)A (Y — @)

Taking into account the Lukasiewicz’s truth functions
corresponding to — and -, it is easy to check that
the truth functions for the above connectives are the
following ones:

r&s = maz(0,r+s—1)

rVs = min(r+s,1)

rvVs = maz(rs)

rAs = min(r,s

reos = min(l-r+s,1—s+7)

An evaluation of atoms is now a mapping of atomic
propositions into [0, 1]. Such mappings extend
uniquely to an evaluation of all formulas respecting
the above truth functions.

A graded formula is a pair (p,r) where ¢ is a formula
and r € [0, 1] is rational. Such a formula is understood
as saying that “the truth value of ¢ is at least »”.

Logical azioms are:
(i) axioms of Lukasiewicz’s logic (all in degree 1)
o — (Y — )
(0= 4) = ((¥ = x) = (¢ = x))

(= ) = (¥ — 9)
((p =)= %) = (¥ = ¢) = 9)
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(ii) bookkeeping axioms: (for arbitrary rational r,s €

[0,1]):

7 in degree r,
=7 < —7 in degree 1,
7 — s« (F — 5) in degree 1. !

Deduction rules are:

(i) modus ponens: from (p,r) and (¢ — %, s) derive

(Y, 7 & )

(ii) truth constent introduction: from (p,s) derive
(F— o,7 — s).

We define a graded proof from a fuzzy theory T as a
sequence of graded formulas

(‘pla Tl): ceey (‘pn: rn)

such that for each 4, (¢;,7;) is either a logical axiom
(i.e. ¢; is a logical axiom in degree r;) or (y;,r;) is
an axiom of T (i.e. T(p;) = m) or (p;,r;) follows
from some previous member(s) of the sequence by a
deduction rule. We say that T proves ¢ in degree r,
denoted T F (¢, r), if there is a graded proof from
T whose last element is (¢, 7). The provability degree
of o in Tis |@|p = sup{r | T F (¢,r)}. The truth
degree of ¢ in T is ||¢||; = inf{e(p) | e evaluation, e
model of T'}. Notice that both ||¢||; and |¢ |, may be
irrational.

2.2 Completeness theorem for RPL. For each T
and ¢,

lelr = llelir
i.e. the provability degree equals to the truth degree.

3 A fuzzy logic of probability

In this section we are going to define a fuzzy theory in
RPL, that we shall call FP, directly related to prob-
ability theory. We start with a set of propositional
variables p,q,... and the set of all propositional for-
mulas built from them. Since we shall be interested in
probabilities of these formulas, and hence in classical
equivalence, we shall only use for them one conjunction
and one disjunction, say A and V. We call these for-
mulas crisp formulas. As suggested in [Hajek and Har-
mancové, 1994], we associate with each crisp formula
¢ a new propositional variable f,,, which will be read
as “pis PROBABLE”,or “PROBABILITY OF ¢
is HIGH”. This is understood as a fuzzy proposi-
tion, and given a probability P, we are free to define
e(f,) = P(p), i.e. assign the probability value P(¢p)
as the truth-value of f,. We may call the variables of
the form f, fuzzy propositional variables and they will
be taken as the propositional variables of our fuzzy
theory FP. Next we precisely define the F P theory
and show it is probabilistically meaningful.

lEzamplc;s of bookkeeping axioms: for r = 0.4 and s =
0.3 we get 0.6 «> —0.4 and 0.9 «— (0.4 — 0.3).



Montreal, Quebec, Canada, August 18-20, 1995

3.1 Syntax of FP.FP-formules are just RPL-
formulas built from fuzzy propositional variables, i.e.
formulas built from variables of the form f, using con-
nectives. The Azioms of FP are those of RPL (see
above) plus:

(FP1) (fy,1) for ¢ being an axiom of classical propo-
sitional logic (the obvious three schemes),

(FP2) (fo—y — (fo — fy),1) for all o, 4,
(FP3) (f-p <> —fp, 1) for each ¢, and

(FP4) (fovy < [(fo = fory) — fyl, 1) for each o, 4.

Notice that (FP3) and (FP4) axioms are direct trans-
lations of two of the well-known axioms of probabil-
ity, namely the relationship between the probability
of one proposition and its negation and the finitely
additivity property. Axioms (FP1) and (FP2) guar-
antee the preservation of classical equivalence and the
monotonicity as it is proved in the next lemma and
corollary.

3.2 Lemma. If ¢ is a boolean tautology (i.e. provable
in boolean propositional calculus) then FP proves f,
in degree 1.

3.3. Corollary. For any “crisp” formulas ¢ and ¢
we have:

(1) If ¢ — 9 is a boolean tautology then FP proves
fo — fy in degree 1.

(2) Hence if ¢ < 1 is a boolean tautology then FP
proves f, < fy in degree 1.

(3) FP proves foay — f, in degree 1.

Next we show that FP has exactly the intended se-
mantics , that is, models of F P are defined by proba-
bility functions on the set of crisp formulas.

3.4 Theorem. An evaluation e of atomic FP-
formulasis a model of the theory F P if, and only if, the
mapping P defined on crisp formulas by P(¢) = e(f,)
is a finitely additive probability on crisp formulas.

Proof.

(1) Let e be a model of FP and define P(p) = e(f,)
for all ¢. If ¢ is classically equivalent to ¢ then FP I
(fo < fy,1) by (2) of Corollary 3.3, hence e(f, «—
fo) =1, e(fyo) = e(fy) and therefore P(p) = P(3);
thus P preserves logical equivalence. Clearly, FF.P
(firue, 1) and FP & (= fraise; 1), hence P(true) = 1
and P(false) = 0. Also P(—¢) = = P(y) is clear from
(FP3). Now take arbitrary ¢, and put a = P(p V
¢): b= P((p), ¢ = P('L»b): d= P((p A¢) By (FP4):
a=(b—d) — cand b > d (by Corollary 3.3); thus
a=(1-b+d) —mc Nowy — (¢ — (pAY))
is a Boolean tautology, hence FP  (fy — (f, —
fong), 1) and hence ¢ = e(fy) < e(fy — fons) =
1-b+d;thusa=(1-b+d) > c=1—(1-b+d)+c=
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b+ c—d. Thus P is a probability.

(2) Conversely, assume that P is a probability on crisp
formulas and put e(f,) = P(p). We verify that e
assigns 1 to each axiom of FP. Clearly, if ¢ is an
axiom of classical logic then ¢ is a Boolean tautology
and hence e(f,) = P(¢) = 1. This verifies (FP1). To
verify (FP2) we show P(p — ¢) < (P(¢) — P(¥)).
Put now P(pA¢) =a, PlpA—9) =b, P(mpAY) =
¢, P(—p A=) = d; then P(p — ¢) = 1 — b, whereas
(P(6) = P(#) =1~ (a+b)+ (a4¢) = 1 btec>
P(p — 1) as desired. Under the present meaning of
a,b,c,d we have e(fovy) = P(p V) =a+b+c, and
e((fo = fory) = fy) = ((a+b) = a) = (a+c) =
(1—3b) = (a+¢) = a+ b+ c This verifies (FP4);
(FP3) is evident. O

In [Hijek and Harmancovd, 1994] the authors raised
the question whether it could be possible for a fuzzy
theory to have an axiomatization probabilistically
complete in some sense. Here we give a positive an-
swer.

3.5 Definition. A fuzzy theory T is stronger than F P
if for each formula & in the language of FP, T(®) >
FP(®) (i.e. all the axioms (FP1) ... (FP4) get the
value 1 in T). A probability P on crisp formulas is a

model of T if the corresponding evaluation ep of atoms
of FP, defined as ep(f,) = P(p), is a model of T

3.6 Corollary. Let T be a fuzzy theory stronger than
FP. Then, for each FP-formula &,

| ® |r=inf{ep(®) | P probability, P model of T'}.

This follows directly from completeness of RPL and
from theorem 3.4.

3.7 Corollary. (Probabilistic Completeness for
FP) In particular, for each crisp formula ¢,

| fo |7=inf{P(¢) | P probability, P model of T},
1— | f-y |7=sup{P(p) | P probability, P model of T}.

This result tells us that if T+ (f,,7) then for every
probability P which is a model of T, P(p) > r; and
also that if T I/ (f,,7) (i.e. there is no T-proof of
¢ to the degree r) then for each »' > r there exists
a probability P which is a model of T' and such that
P(p) < 7.

3.8 Remarks. Axioms (FP1) and (FP2) could be
replaced by other two (less elegant) axioms, namely
by:

(FPL) (firue, 1), and

(FP2") (f, — fy,1), for any ¢ and 4 such that ¢ — 1
is a boolean tautology.

Notice that (FP2’) is a direct expression of the mono-
tonicity of probability measures with respect to set
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inclusion. Notice also that (FP4) may be replaced in
turn by the following axiom:

(FP4) ((fovy = fo) = (fp = fory)s 1)

which is another equivalent expression for the additiv-
ity property. As a final remark, let us mention also
that in F P is not obvious how to represent statements
about strict lower or upper bounds of probability.

3.9 Example. We present here an example of a proof
in FP, in particular we show how to prove that f, <
(forw Y fon-y) is a theorem of FP, corresponding
to the well known property of probability functions
stating that P(p) = P(p A9) + P(p A —9). Clearly,

FPF (fw o f(wM/J)V(W\-WIJ): 1);

by (FP 4), writing ¢1 for ¢ A4 and @0 for ¢ A -9, we
get the following chain of deductions:

FP +  (forvpo < ((fo1r = foinpo) = fpo), 1),
FP F (f(plA(pO « 0, 1):

FP ((f(pl - f(plA(pO) A _‘fgol: 1):

FP F (f(pr(pO A (_‘fgol - ftpO): 1):

FP F  (foiveo < (fo1 ¥ foo), 1),

FP t  (fo o (fory Y for-y) 1)

This completes the example.

4 Possible extensions

The approach described so far is suitable for further
developing at least along two main streams. On the
one hand, we obviously need to extend RPL with
new connectives if we want to deal with conditional
probabilities. This is addressed in subsection (a). On
the other hand, the proposed approach can be easily
adapted to cope with other uncertainty models, the
main point being to replace the characteristic axioms
of probability theory in F P by the corresponding ax-
ioms characterizing other uncertainty models. As a
matter of example, we shall provide in subsection (b)
the fuzzy theory FN corresponding to Possibility The-
ory and prove its completeness.

(a) Dealing with conditional probabilities

The first idea in extending the framework presented in
the previous section to deal with conditional probabil-
itles is to look for the possibility of expressing con-
ditional probabilitiy values as truth-values of fuzzy
formulas, just as it has done in Section 3 for uncon-
ditional probabilities. Obviously, to do so, we need
to introduce new connectives in the language, ® and
®—, corresponding to the product conjunction and its
residuated implication (division) respectively. Then,
for instance, P(y | ¢) > « could be expressed as (f,
®— foay, ). This approach has technical problems
due to the lack of continuity of the truth function as-
sociated to ®— (see section 5). However, assuming
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that P(p) > 0, one can always express the inequal-
ity P(v | ¢) > o as P(p A1) > aP(p). Therefore,
as a first step, we can focus on extending the Rational
Pavelka’s Logic with only the new conjunction connec-
tive ®, having the product as its corresponding truth
function. This is done below by defining the fuzzy
theory RPL™, the extension of RPL, as follows.

4.1 Syntax. Formulas of RPL™T are built as in RPL,
just adding the connective ® to the language. Logical
axioms of RPL™ are those of RPL plus

- monotonicity:

(p—9)— (p®@x) = (¥ QX))

(e = 9) = (x®9) = (x® V)
- bookeeping:
FTRS—T XS

all of them in degree 1.

This extension can be proved to be complete w.r.t. the
above semantics, that is, the following theorem holds.

4.2 Completeness theorem for RPL*t. For each
theory T and formula ¢ of RPLT,

|‘P|T = ||‘P||T:

i.e. in RPLT the provability degree also equals to the
truth degree.

Now we are ready to define the probabilistic fuzzy the-
ory FPT analogously to F P, just by replacing the ax-
ioms of RPL by those of RPL*. In the language of
FP? we are actually able to express statements about
conditional probabilities by means of formulas like

(a®f<p - fsz't/ul)

expressing that the conditional probability of ¥ given
@ is not smaller than «, provided that the probability
of ¢ is known to be greater than 0. This is formalized
by next theorem.

4.3 Theorem. Let T be a theory stronger than FP*
and let ¢ a crisp proposition such that |¢|; > 0. Then
|&® fo — fony |p = 1 if and only if, for each proba-
bility P which is a model of T, it is the case that
P |p)>a.

Proof. If |&® f, — foay |p = 1 then by completeness
we have that ep(@ ® f, — foay) = 1 for any prob-
ability P model of T, i.e. a- P(p) < P(p A %), and
hence P(% | ¢) > «, provided that P(¢) > 0, but this
is guaranteed by having |¢ |, > 0.0

Moreover, statements about conditional independence
saying that for instance ¢ and % are independent given
x could be also expressed by means of axioms extend-
ing FPt as

((fwM/J/\x ® fx) o (f¢Ax ® ftp/\x): 1)
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((fwM/J/\-'x ® f-'x) o (filJ/\-'x ® ftp/\-'x): 1)

Further results about the probabilistic completeness of
F Pt will deserve future attention.

(b) A fuzzy logic for possibility theory

As an example of the fact that fuzzy logic is also a suit-
able framework to describe other uncertainty models
different from probability theory, we present below the
fuzzy theory F PS to reason with formulas valued with
possibility and necessity degrees. Possibility theory, as
uncertainty model, has been widely developed from a
logical point of view under the so-called Possibilistic
Logic (see e.g. [Dubois et al., 1994] for an extensive
survey). Possibilistic logic obviously does not need the
whole machinery we are going to use, but nevertheless
we still think it can be interesting for exemplifying pur-
poses. Thus, now we are interested in associating to
each crisp formula ¢ a fuzzy formula f,, which will be
read as “p is NECESSARY” or “p is CERTAIN?,
in such a way that the truth-degree of f, represents the
necessity degree (in the sense of necessity measures) of
¢, and therefore the truth degree of —f., represents
the possibility degree of ¢.

4.4 Syntax of FPS. FPS-formulas are just FP-
formulas, i.e. formulas built from fuzzy propositional
variables of the form f, using connnectives. Azioms
of FPS are those of RPL (see section 3) plus:

(FPS1) (fy, 1) for ¢ being an axiom of classical propo-
sitional logic, ( = (FP1))

(FPS2) (fomy — (fo — fu), 1) forall g, ¢, (= (FP2))
(FPSB) (_‘ffalse; 1), and
(

(FPS4) (ftp A f¢) - fwM/u 1)-

Notice that, if we denote —f., by g,, we would get
dual axioms corresponding to possibility measures, in
particular (FPS1) and (FPS3) are also valid for propo-
sitional variables of type g,, and (FPS4) would be
equivalently expressed as

(FPS4') (94 V 99) < gpvy, 1)

Caution: Note that the obvious analogon of (FPS2)
for possibilities is not sound.

Analogous results to those for FP can be proved for
FPS.

4.5 Lemma. For any “crisp” formulas ¢ and ¢ we
have:

(1) If ¢ is a boolean tautology (i.e. provable in boolean
propositional calculus) then FPS proves f, in degree
1.

(2) If ¢ is a boolean antitautology (i.e. —¢ is provable
in boolean propositional calculus) then FPS proves
—f, in degree 1.
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(3) If ¢ — 9 is a boolean tautology then FPS proves
fo — fy in degree 1.
(4) If ¢ — 9 is a boolean tautology then FPS proves
fo = fy in degree 1.

4.6 Theorem. An evaluation e of atomic FPS-
formulas is a model of the theory FPS iff the map-
ping N defined on crisp formulas by N(¢) = e(f,) is
a necessity measure on crisp formulas, i.e. N(True) =

1, N(False) = 0 and N(p A9Y) = min(N(p), N(9)).
Proof.

We only prove that if Nis a necessity on crisp formulas
then the evaluation defined as e(f,) = N(¢) assigns 1
to axiom (FPS 2). The rest is straightforward. Thus,
we have to prove that Nec(p — ¢) < (Nec(p) —
Nec(y)). By cases:

- if Nec(p) < Nec(y) it is trivial.

- suppose then that Nec(y) > Nec(¢). Since
Nec(y) = min(Nec(y V), Nec(yp vV —¢p) and Nec(y Vv
@) > Nec(p) > Nec(¢) the only possibility is that
Nec(y) = Nec(y V —p), and therefore (Nec(p) —

proof.0

4.7 Definition. A fuzzy theory T is sironger than
FPS if for each formula ® in the language of FPS,
T(®) > FPS(®) (i.e. all the axioms (FPS 1); ...
(FPS 4) get the value 1in T'). A necessity function N
on crisp formulas is a model of T if the corresponding
evaluation ey of atoms of FPS defined as ex(f,) =
N(p) is a model of T'.

The completeness result for #PS, analogous again to
that for F'P is given in the following theorem.

4.8 Theorem. Let T be a fuzzy theory stronger than
FPS. Then, for each FPS-formula &,

| ® |r= inf{en(®) | N necessity, N model of T'}.
In particular, for each crisp formula ¢ we have:

| fo l7=inf{N(p) | N necessity, N model of T}.

Notice that the well-known possibilistic resolution
principle for necessity valued clauses, saying that from

“N(pVY)>ar1” and “N(-p V x) > a2”
it can be inferrred
“NVx)>arAar”,

is now a derivable inference rule in FPS. Namely,
since [(¢ V) A (—p V x)] — (¥ V x) is a boolean tau-
tology, by lemma 4.5(3), F P S proves f(,vy)a(-pvx) —
fyvyx with degree 1. By (FPS4), FP proves also
(fove A fapvx) — fovyx with degree 1. Now the
proof easily comes by modus ponens taking into ac-
count that the completeness of RPL allows us to
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infer (fovy A fapvx, @1 A a2) from (fovy,a1) and
f—upVx:a2 .

5 Conclusions and open problems

In this paper we have been concerned about stress-
ing the conceptual differences between fuzzy logic and
probability, and we have shown, as a main result, that
both notions can be consistently used together to de-
fine a fuzzy theory F P in the Rational Pavelka’s Logic
(an extension of Lukasiewicz’s logic with truth con-
stants and graded proofs) which is closely related to
probability theory. The basic approach has been: the
probability of a crisp formula ¢ is understood as the
truth degree of the fuzzy atomic proposition f, saying
that “p is probable”. Models of F P are in one-to-one
relation to probabilities on the set of crisp formulas;
graded proofs of f, in a fuzzy theory T containing F P
give lower (and upper) bounds of P(y) for all proba-
bilities P that are models of T. This is hoped to con-
tribute to the understanding of the relation of fuzzy
logic and probability. Moreover we have also sketched
two interesting extensions of this approach. In the first
one we show the possibility of dealing with conditional
probabilities inside the same framework by extending
Rational Pavelka’s Logic with the product conjunc-
tion connective. In the second one we have shown the
possibility of adapting the proposed approach to cope
with other uncertainty calculi, in particular this has
been done for Possibility theory. Remaining issues to
be addressed are, among others:

- a more elegant way of representing conditional proba-
bilities by means of the product residuated implication
and try to solve the problems related to the fact that
this implication is not continuous and hence does not
admit a Pavelka-style completeness theorem;

- axiomatization of a fuzzy theory related to belief
functions. To this respect, it seems suitable to in-
troduce in the language some modalities if we want to
avoid having very cumbersome axioms corresponding
to the sub-additivity properties of belief functions.
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