
Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Modern Programming
Languages

Lecture 13-17

 Ada Programming Language
An Introduction

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Design Goals

Ada is a computer programming language originally designed to support the
construction of long-lived, highly reliable software systems. Its design
emphasizes readability, avoids error-prone notation, encourages reuse and team
coordination, and it is designed to be efficiently implementable.
A significant advantage of Ada is its reduction of debugging time. Ada tries to
catch as many errors as reasonably possible, as early as possible. Many errors
are caught at compile-time by Ada that aren't caught or are caught much later by
other computer languages.

Ada programs also catch many errors at run-time if they can't be caught at
compile-time (this checking can be turned off to improve performance if desired).

In addition, Ada includes a problem (exception) handling mechanism so that
these problems can be dealt with at run-time.

The main design goals of Ada were:

• Program reliability and maintenance
• Military software systems are expected to have a minimum lifetime of 30

years.
• Programming as a human activity
• Efficiency

Hence emphasis was placed on program readability over ease of writing.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Ada History

The need for a single standard language was felt in 1975 and the draft
requirements were given the code name strawman. Strawman was refined to
Woodman and then Tinman in 1976. It was further refined to ironman. At that
time proposals were invited for the design of a new language. Out of the 17
proposals received, four were selected and given the code names of green, red,
blue, and yellow. Initial designs were submitted in 1978 and red and green short
listed on the basis of these designs. Standard requirements were then refined to
steelman. The designs were refined further and finally Green was selected in
1979. DoD announced that the language will be called Ada. The 1995 revision of
Ada (Ada 95) was developed by a small team led by Tucker Taft. In both cases,
the design underwent a public comment period where the designers responded
to public comments.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Ada Features
The salient features of Ada language are as follows:

• Packages (modules) of related types, objects, and operations can be
defined.

• Packages and types can be made generic (parameterized through a
template) to help create reusable components.

• It is strongly typed
• Errors can be signaled as exceptions and handled explicitly. Many serious

errors (such as computational overflow and invalid array indexes) are
automatically caught and handled through this exception mechanism,
improving program reliability.

• Tasks (multiple parallel threads of control) can be created and
communicate. This is a major capability not supported in a standard way
by many other languages.

• Data representation can be precisely controlled to support systems
programming.

• A predefined library is included; it provides input/output (I/O), string
manipulation, numeric functions, a command line interface, and a random
number generator (the last two were available in Ada 83, but are
standardized in Ada 95).

• Object-oriented programming is supported (this is a new feature of Ada
95). In fact, Ada 95 is the first internationally standardized object-oriented
programming language.

• Interfaces to other languages (such as C, Fortran, and COBOL) are
included in the language.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

The first Example – Ada “Hello World”

with Ada.Text_Io; -- intent to use
use Ada.Text_Io; -- direct visibility

 -- the first two statements are kind of include in C

procedure Hello is -- procedure without parameters is the
 -- starting point
begin
 Put_Line("Hello World!");

-- this statement prints “Hello World” on the output
end Hello;

It may be noted that Ada is not case sensitive.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Ada Operators

Ada has a rich set of operators. The following table gives a list of these operators
and also shown corresponding C++ operators for reference.

Operator C/C++ Ada
Assignment = :=
Equality == =
Non Equality != /=
Greater Than > >
Less Than < <
Greater Than Or Equal >= >=
Less Than Or Equal <= <=
PlusEquals +=
SubtractEquals -=
MultiplyEquals *=
DivisionEquals /=
OrEquals |=
AndEquals &=
Modulus % Mod
Remainder Rem
AbsoluteValue Abs
Exponentiation **
Range ..
Membership In
Logical And && And
Logical Or || Or
Logical Not ! Not
Bitwise And & And
Bitwise Or | Or
Bitwise Exclusive Or ^ Xor
Bitwise Not ~ Not
String Concatenation &

It is important to note that Ada has not included operators like PlusEquals as
such operators reduce readability.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Operator Overloading

Ada allows a limited overloading of operators. The exception in Ada is that the
assignment operator (:=) cannot be overridden. It can be overridden in case of
inheritance from a special kind of “abstract class”. When you override the
equality operator (=) you also implicitly override the inequality operator (/=).

Ada Types
Ada provides a large number of kinds of data types. Ada does not have a
predefined inheritance hierarchy like many object oriented programming
languages. Ada allows you to define your own data types, including numeric data
types. Defining your own type in Ada creates a new type.

Elementary Types

The elementary Ada type are:

• Scalar Types
• Discrete Types
• Real Types
• Fixed Point Types
• Access Types

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Discrete Types

Discrete types include Integer types, Modular types, Character types,
enumeration types, and Boolean type.

Integer Types

We first look at Signed Integer types. Ada, like other languages, supports signed
integers. However, in this languages we can also define our own integer type
with a limited set of values as shown in the following example:

type Marks is range 0..100;

This defines a type Marks with the property that a variable of this type can only
have values between 0 and 100.

We can now create variable with this type as shown below:

finalScore : Marks;

You may also note that the syntax of Ada for variable declaration is different from
C. In this case, the type comes after the variable name and is separated by a :
from the variable names.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Unsigned (Modular) Types

Modular types support modular arithmetic and have wrap around property. This
concept is elaborated with the help of the following example:

type M is mod 7; -- values are 0,1,2,3,4,5,6

q : m := 6; -- initialization
…
q := q + 2; -- result is 1

It is most commonly used as conventional unsigned numbers where overflows
and underflows are wrapped around.

type Uns_32 is mod 2 ** 32;

Remember that twos complement arithmetic is equivalent to mod 2**wordsize.

Character Types

There are two built in character types in Ada
• Simple 8-bit ASCII Characters
• Wide_Character that support 16-bit Unicode/ISO standard 10646.

These are good enough for most purposes, but you can define your own types
just like the integer types:

type LetterGrades is (‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘I’, ‘W’);

This can now be used to declare variables of this type.

Enumeration Types

Just like C, an enumeration type in Ada is a sequence of ordered enumeration
literals:

type Colors is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
type State is (Off, Powering_Up, On);

It is however different from C in many respects:
1. There is no arithmetic defined for these types. For example:

S1, S2 : State;
S1 := S1 + S2; -- Illegal

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

2. One can however add/subtract one (sort of increment and decrement) using
the Pred and Succ as shown below:

State’Pred (S1)
State’Succ (S2)

3. Unlike C, the same symbolic literal can be used in two enumeration types. For

example:

type RainbowColors is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
type BasicColors is (Red, Green, Blue);

The Ada compiler will use the type of the variable in question and there will be no
ambiguity.

Enumeration types are used as attributes or properties of different objects.

Boolean Types

Boolean is a predefined enumeration type and has the following definition.

type Boolean is (False, True);

Expressions of type Boolean are used in logical statements and are used as
conditions in the if statements, while loops, exit statements, etc.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Floating Point Types

Like most other languages, Ada also supports floating point types. In this case,
we can also explicitly declare the desired precision of the number. For example:

type Double is digits 15;

defines a floating point type with 15 decimal digits of precision.

type Sin_Values is digits 10 range -1.0..1.0;

defines a type with 10 decimal digits of precision and a valid range of values from
-1.0 through 1.0.

Ordinary Fixed Point Types

Ada also supports fixed point real numbers that are used for more precise
decimal arithmetic such as financial applications. In the Ordinary fixed point type,
the distance between values is implemented as a power of 2. For example:

 type Batting_Averages is delta 0.001 range 0.0..1.0;

The type Batting_Averages is a fixed point type whose values are evenly spaced
real numbers in the range from 0 through 1. The distance between the values is
no more than 1/1000. The actual distance between values may be 1/1024, which
is 2-10.

Decimal Fixed Point Types
In the case of decimal fixed point types, the distance between values is
implemented as a power of 10.

type Balances is delta 0.01 digits 9 range 0.0 .. 9_999_999.99;

The important difference in the definition of a decimal fixed point type from an
ordinary fixed point type is the specification of the number of digits of precision.

This example also shows how Ada allows you to specify numeric literals with
underscores separating groups of digits. The underscore is used to improve
readability.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Arrays

Like most other languages, Ada also supports arrays. One major difference
between the arrays in Ada and C is that the indexes of arrays in Ada do not start
from 0. In fact, the range of indexes to be used can be defined by the
programmer as shown below:

type Int_Buffer is array (1..10) of Integer;

type Normalized_Distribution is array(-100..100) of Natural;

An array type can also be defined without a specific size. In this case the size is
defined at the time of instantiation of a variable of that type. For example:

type String is array (Positive range <>) of Character;

Can now be used to create variable of specific size as shown below:

Last_Name : String(1..20);

Another very interesting feature of Ada is that the array indexes can be of any
discrete type. For example if we define Days as below:

type Days is (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday);

then we can create an array which uses Days (or any sub-range of Days) as the
array indexes as shown below.

type Daily_Sales is array(Days) of Float;

Now the type Daily_Sales is an array type of size 7 and indexes Monday through
Sunday. Also note that these literals will be used as indexes in the statements
that reference array elements.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Record Definitions

Record types are like structures in C. The following example shows a record type
Address with three fields.

type Address is record
 Street : Unbounded_String;
 City : Unbounded_String;
 Postal_Code : String(1..10);
end record;

Once defined, it can be used to declare variables of that type as shown below:

My_Address : Address;

The dot operator, ‘.’, is used to access individual fields. This is demonstrated in
the example below:

My_Address.Postal_Code := “00000-0000”;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Discriminated Records

Discriminated records are like union types in C. There are however major
differences between C union types and Ada discriminated records. The union
type in C is fundamentally unsafe, and therefore unacceptable. For example,
consider the following definition:

union (int, float) puzzle;

Now puzzle has either an int or a float. But at runtime, the compiler and the
environment cannot tell which particular value has been stored currently. So we
have to trust the programmer. In Ada we are short on trust. The whole philosophy
is that a programmer is a human and all humans make mistakes. So to make it
safer, Ada uses discriminants in a record that tell what type of data is currently
stored there. This is shown in the following example:

type IF is (Int, Float);
type Int_Float (V : IF := Int) is record
 case V is
 when Int => Int_Val : Integer;
 when Float => Float_Val : Float;
 end case;
end record;

Now the value of the discriminant V shows what type is currently present.
Variables of a discriminated type are referenced as shown in the following
example:

Puzzle : Int_Float;
…
Puzzle := (Float, 1.0);
F := Puzzle.Float_Val; -- OK
I := Puzzle.Int_Val; -- type mismatch - raise exception
…
Puzzle.V := SomeIntValue; -- not allowed!

Discriminated records can be used for making subtypes

subtype PuzzleI is puzzle (Int); -- this type only holds int values
These can also be used to specify array dimensions :
Subtype Vlen is Integer range 1 .. 10;
type Vstr (Vlen : Integer := 0) is record
 Data : String (1 .. Vlen);
end record;
VV : Vstr := (5, “hello”);

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Access Types

An access type roughly corresponds to a C++ pointer.

type Address_Ref is access Address;

A_Ref := new Address;
A_Ref.Postal_Code := "94960-1234";

Note that, unlike C, there is no notational difference for accessing a record field
directly or through an access value.

To refer to the entire record accessed by an access value use the following
notation:

Print(A_Ref.all);

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Statement Forms

Assignment statement

Like all imperative languages, Ada also supports the assignment sta tement.
However, in Ada the assignment is not an expression like C. The syntax of the
assignment statement is as follows:

Variable := expression;

Note that, in Ada, ‘:=’ is used as the assignment operator whereas ‘=’ is used as
assignment operator in C.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

If Statement

The Ada if statement is fully blocked. In fact, all Ada control structures are fully
blocked. That means, we do not have two separate forms if we need only one
statement to be executed if the condition for the if statement is true and if we
want more than one statements. The body of the if statements is always in side a
a complete block that starts with the then keyword and end with end if as shown
below:

if condition then
 -- statement(s)
end if;

If an if statement has multiple else parts with separate conditions, then Ada uses
the keyword elsif to indicate that. The else part is optional and comes at the end.
Each if statement must have a corresponding end if in it. The following examples
demonstrate this concept.

if condition1 then
 -- statement(s)
elsif condition2 then
 if condition3 then
 -- statements
 end if;
 -- statement(s)
…
else
 -- statement(s)
end if;

if condition1 then
 -- statements
elsif condition2 then
 if condition3 then
 -- statements
 end if;
 -- statements
…
else if condition4 then
 -- this is a new if statement and hence must have its own end if
 -- statements
 end if;
 -- statements
end if;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Case Statements

Case statement is like the switch statement in C, but as compared to C, it is safer
and more structured. Its syntax is as shown below:

case expression is
 when choice list =>
 sequence-of-statements
 when choice list =>
 sequence-of-statements
 when others =>
 sequence-of-statements
end case;

As opposed to C, the case statement is fully structured; there is no equivalent of
the break statement and the control does not fall through to the next choice after
executing the set of statements for the selected choice. The choice _list can have
more than one values specified in the form of a range specified with the ..
operator like 1..10, discrete values separated by | such as a | e | i | o | u, or a
combination of both. The following example elaborates this concept.

case TODAY is
 when MON .. THU =>
 WORK;
 when FRI =>
 WORK; PARTY;
 when SAT | SUN =>
 REST;
end case;

All values in when branches must be static and all possible values of expression
must be included exactly once. In Ada, the case expression must match one of
the choices given in the when clause as an exception will be raised as run time if
there is no match. when others => is like default in C and is used to cover all
the rest of the choices not mentioned in the above when clauses.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Looping

There are three types of loops in Ada:
1. Simple Loop – unconditional infinite loop
2. While loop
3. For Loop

Simple Loop

A simple loop is used to signify a potentially infinite loop. These loops are
typically used in operating systems and embedded systems. Its syntax is as
follows:

loop
 -- Loop body goes here
end loop;

The exit statement can be used to come out of the loop as shown below.

loop
 -- Loop body goes here
 exit when condition;
end loop;

It is equivalent to the following code segment.

loop
 -- Loop body goes here
 if condition then
 exit;
 end if;
end loop;

The exit statement is like the break statement in C but there are certain
differences and will be discussed later.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

While and For Loops

Ada has only the pre-test while loop and does not support the post-test loop like
the do-while statement in C. The while statement in Ada has the following
structure.

while condition loop
 -- Loop body goes here
end loop;

The semantics of the while statement are exactly the same as its counterpart in
C.

The for statement in Ada is however quite different here. In C, the for statement
is virtually the same as the while statement as the condition in the C for
statement is checked in each iteration and the number of iterations therefore
cannot be determined upfront.

In Ada for statement, the number of iterations are fixed the first time the control
hits the for statement and is specified by a range just like the choice_list in the
case statement as shown below:

for variable in low_value .. high_value loop
 -- Loop body goes here
end loop;

The value of the loop variable can be used but cannot be changed inside the
loop body. The loop counting can be done in the reverse order as well. This is
shown below.

for variable in reverse high_value .. low_value loop
 -- Loop body goes here
end loop;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Exit statement

The exit statement can be used with our without a when condition as mentioned
in the case of the loop statement.
exit;
exit when condition;

It can only be used in a loop. It can use labels and can be used to specify the
specific loop to exit as shown below.

Outer : loop
 Inner : loop
 …
 exit Inner when Done;
 end loop Inner;
end loop Outer;

Block Statement

Block statement in Ada is very similar to a block in C. It can be used anywhere
and has the following structure:

declare -- declare section optional
 declarations
begin
 statements
exception -- exception section optional
 handlers
end;

Return statement

The return statement can only be used in subprograms and has the following
form:

return; -- procedure
return expression; -- function

Function must have at least one return.

Raise statement

Raise statement is like throw statement in C++ and is used to raise exception as
shown below:

raise exception-name;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Declaring and Handling Exceptions

Ada was the first language to provide a structured exception handling
mechanism. C++ exception handling is very similar to Ada. In Ada, the
programmer can declare, raise, and handle exception.

Declaring an exception
Exceptions are declared just like any other variable before they can be raised.
This is shown in the following example:

Error, Disaster : exception;

Raising an exception

Like throw in C++, an Ada programmer can explicitly raise an exception and it
strips stack frames till a handler is found.

raise Disaster;

Handling an exception

Like C++, an exception handling code may be written at the end of a block.

Anywhere we have begin-end, we can also have an exception handling code.
The structure of exception handling part is shown in the following example.

begin
 statements
exception
 when exception1 => statements;
 when exception2 => statements;
end;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Subprograms

In Ada, there are two types of subprograms: procedures and functions. Unlike C,
we can also have nesting of subprograms. A subprogram defined inside another
subprogram an be used by its parent, children, or sibling subprograms only.

This is demonstrated in the following example:

Procedure My_procedure(x, y : IN OUT integer) is
 …

function aux_func(a : Integer) return integer is
 Temp : float;
begin
 …
 return integer(temp) * a; -- retrun temp * a is not allowed
end aux_func;
…

begin -- begin of My_procedure
 …
 aux_func(x);
 …
end My_procedure;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Packages
The primary structure used for encapsulation in Ada is called a package.
Packages are used to group data and subprograms. Packages can be
hierarchical, allowing a structured and extensible relationship for data and code.
All the standard Ada libraries are defined within packages.

Package definitions usually consist of two parts: package specification and
package body. Package bodies can also declare and define data types,
variables, constants, functions, and procedures not declared in the package
specification. In the following example, a STACK package is defined. We first the
have the package specification as follows:

package STACK is
 procedure PUSH (x : INTEGER);
 function POP return INTEGER;
end STACK;

The body of the package is shown below.

package body STACK is
 MAX: constant := 100;
 S : array (1..MAX) of INTEGER;
 TOP : INTEGER range 0..MAX;

 procedure PUSH (x : INTEGER) is
 begin
 TOP := TOP + 1;
 S(TOP) := x;
 end PUSH;

 function POP return integer is
 TOP := TOP - 1;
 return S(TOP + 1);
 end POP;
begin
 TOP := 0;
end STACK;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Once defined, a package can be used in the client program as follows:

with STACK; use STACK;
procedure myStackExample is
 I, O : integer;
begin
 …
 push(i);
 …
 O := pop;
 …
end myStackExample;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Object-Orientation – The Ada Way
Ada provides tools and constructs for extending types through inheritance. In
many object oriented languages the concept of a class is overloaded. It is both
the unit of encapsulation and a type definition. Ada separates these two
concepts. Packages are used for encapsulation and Tagged types are used to
define extensible types.

Tagged Type

A tagged type is like a record which can be used to declare objects. Following is
an example of a tagged type:

type Person is tagged record
 Name : String(1..20);
 Age : Natural;
end record;

Such a type definition is performed in a package. Immediately following the type
definition must be the procedures and functions comprising the primitive
operations defined for this type. Primitive operations must have one of its
parameters be of the tagged type, or for functions the return value can be an
instance of the tagged type. It allows you to overload functions based upon their
return type. It may be noted that C++ and Java do not allow you to overload
based upon the return type of a function.

Extending Tagged Types
Just like classes in C++, the tagged type can be extended by making a new
tagged record based upon the original type as shown below:

type Employee is new Person with record
 Employee_Id : Positive;
 Salary : Float;
end record;

In this example, type Employee inherits all the fields and primitive operations of
type Person.

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Generics
Generics are like templates in C++ and allow parameterization of subprograms
and packages with parameters which can be types and subprograms as well as
values and objects. The following example elaborates the concept of generics.

generic
 MAX : positive;
 type item is private;
package STACK is
 procedure PUSH (x : item);
 function POP return item;
end STACK;

Note that the type of the item is left unspecified. The corresponding body of
STACK package is as follows:

package body STACK is
 S : array (1..MAX) of item;
 TOP : INTEGER range 0..MAX;

 procedure PUSH (x : item) is
 begin
 …
 end PUSH;

 function POP return item is
 …
 end POP;
begin
 TOP := 0;
end STACK;

Once we have the generic definition, we can instantiate our own STACK for the
given type which is integer in the following example.

declare
 package myStack is new STACK(100, integer);
 use myStack;
begin
 …
 push (i);
 …
 O := pop;
 …
end;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Concurrency

Ada Tasking allows the initiation of concurrent tasks which initiates several
parallel activities which cooperate as needed. Its syntax is similar to packages as
shown below:

task thisTask is
 …-- interfaces
end thisTask;

task body thisTask is
 …
end thisTask;

task simpleTask; -- this task does not provide an interface to other tasks

Here is a very simple example that demonstrates the concept of parallel
processing. In this example we specify COOKING a procedure composed of
three steps.

procedure COOKING is
begin
 cookMeat;
 cookRice;
 cookPudding;
end COOKING;

As these steps can be carried out in parallel, we define tasks for these tasks as
shown below:

procedure COOKING is
 task cookMeat;
 task body cookMeat is
 begin
 -- follow instructions for cooking meat
 end cookMeat;

 task cookRice;
 task body cookRice is
 begin
 -- follow instructions for cooking rice
 end cookRice;

begin
 cookPudding;
end COOKING;

Modern Programming Languages (CS508)

© Copyright Virtual University of Pakistan

Other Features
Ada is a HUGE language and we have looked at may be only 25-30% of this
language. It is to be remembered that the main objective of the Ada design was
to incorporate the contemporary software engineering knowledge in it. In general,
software development time is: 10% design, 10% coding, 60% debug and 20%
test. Last 80% of the project is spent trying to find and eliminate mistakes made
in the first 20% of the project. Therefore Ada promised to spend 20% time in
design, 60% in coding, 10% in debug, and 10% in testing. Therefore cutting the
entire cycle time in half!

I would like to finish with a quote from Robert Dewar:

When Roman engineers built a bridge, they had to stand under it while the
first legion marched across. If programmers today worked under similar
ground rules, they might well find themselves getting much more
interested in Ada.

