
STAT ���� � Introduction to Biostatistics

Lecture Notes

Introduction�

Statistics and Biostatistics�

The �eld of statistics� The study and use of theory and methods for the
analysis of data arising from random processes or phenomena� The study
of how we make sense of data�

� The �eld of statistics provides some of the most fundamental tools
and techniques of the scienti�c method�

� forming hypotheses�
� designing experiments and observational studies�
� gathering data�
� summarizing data�
� drawing inferences from data �e�g�� testing hypotheses�

� A statistic �rather than the �eld of 	statistics
� also refers to a
numerical quantity computed from sample data �e�g�� the mean� the
median� the maximum��

Roughly speaking� the �eld of statistics can be divided into

� Mathematical Statistics� the study and development of statistical
theory and methods in the abstract� and

� Applied Statistics� the application of statistical methods to solve real
problems involving randomly generated data� and the development
of new statistical methodology motivated by real problems�

� Read Ch�� of our text�
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Biostatistics is the branch of applied statistics directed toward applica

tions in the health sciences and biology�

� Biostatistics is sometimes distinguished from the �eld of biometry
based upon whether applications are in the health sciences �bio

statistics� or in broader biology �biometry� e�g�� agriculture� ecology�
wildlife biology��

� Other branches of �applied� statistics� psychometrics� econometrics�
chemometrics� astrostatistics� environmetrics� etc�

Why biostatistics� What�s the di�erence�

� Because some statistical methods are more heavily used in health
applications than elsewhere �e�g�� survival analysis� longitudinal data
analysis��

� Because examples are drawn from health sciences�

� Makes subject more appealing to those interested in health�

� Illustrates how to apply methodology to similar problems en

countered in real life�

We will emphasize the methods of data analysis� but some basic theory
will also be necessary to enhance understanding of the methods and to
allow further coursework�

� Mathematical notation and techniques are necessary� �No apologies��

We will study what to do and how to do it� but also very important is why
the methods are appropriate and what are the concepts justifying those
methods�

� The latter �the why� will get you further than the former �the what��
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Data�

Data Types�

Data are observations of random variables made on the elements of a
population or sample�

� Data are the quantities �numbers� or qualities �attributes� measured
or observed that are to be collected and�or analyzed�

� The word 	data
 is plural� 	datum
 is singular�

� A collection of data is often called a data set �singular��

Example � Low Birth Weight Infant Data

� Appendix B of our text contains a data set called lowbwt contain

ing measurements and observed attributes on ��� low birth weight
infants born in two teaching hospitals in Boston� MA�

� The variables measured here are

sbp � systolic blood pressure

sex � gender ���male� ��female�

tox � maternal diagnosis of toxemia ���yes� ��no�

grmhem � whether infant had a germinal matrix hemorrhage ���yes� ��no�

gestage � gestational age �weeks�

apgar� � Apgar score �measures oxygen deprivation� at � minutes after birth

� Data are reproduced on the top of the following page�

� Read Ch�� of our text�
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� There are � variables here �sbp� sex� etc�� measured on ���
units�elements�subjects �the infants� of a random sample of size ����

� An observation can refer to the value of a single variable for a par

ticular subject� but more commonly it refers to the observed values
of all variables measured on a particular subject�

� There are ��� observations here�
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Types of Variables�

Variable types can be distinguished based on their scale� Typically� di�er

ent statistical methods are appropriate for variables of di�erent scales�

Scale Characteristic Question Examples

Nominal Is A di�erent than B� Marital status
Eye color
Gender
Religious a�liation
Race

Ordinal Is A bigger than B� Stage of disease
Severity of pain
Level of satisfaction

Interval By how many units do A and B di�er� Temperature
SAT score

Ratio How many times bigger than B is A� Distance
Length
Time until death
Weight

Operations that make sense for variables of di�erent scales�

Operations that make sense
Addition� Multiplication�

Scale Counting Ranking Subtraction Division

Nominal
p

Ordinal
p p

Interval
p p p

Ratio
p p p p

� Often� the distinction between interval and ratio scales can be ig

nored in statistical analyses� Distinction between these two types
and ordinal and nominal are more important�
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Another way to distinguish between types of variables is as quantitative
or qualitative�

� Qualitative variables have values that are intrinsically nonnumeric
�categorical��

� E�g�� Cause of death� nationality� race� gender� severity of pain
�mild� moderate� severe��

� Qualitative variables generally have either nominal or ordinal
scales�

� Qualitative variables can be reassigned numeric values �e�g��
male��� female���� but they are still intrinsically qualitative�

� Quantitative variables have values that are intrinsically numeric�

� E�g�� survival time� systolic blood pressure� number of children
in a family� height� age� body mass index�

Quantitative variables can be further subdivided into discrete and con�
tinuous variables�

� Discrete variables have a set of possible values that is either �nite or
countably in�nite�

� E�g�� number of pregnancies� shoe size� number of missing teeth�

� For a discrete variable there are gaps between its possible val

ues� Discrete values often take integer �whole numbers� values
�e�g�� counts�� but some discrete variables can take non
integer
values�

� A continuous variable has a set of possible values including all values
in an interval of the real line�

� E�g�� duration of a seizure� body mass index� height�

� No gaps between possible values�

�



The distinction between discrete and continuous quantitative variables is
typically clear theoretically� but can be fuzzy in practice�

� In practice the continuity of a variable is limited by the precision of
the measurement� E�g�� height is measured to the nearest centimeter�
or perhaps millimeter� so in practice heights measured in millimeters
only take integer values�

� Another example� survival time is measured to the nearest day�
but could� theoretically� be measured to any level of precision�

� On the other hand� the total annual attendance at UGA football
games is a discrete �inherently integer
valued� variable� but� in prac

tice� can be treated as continuous�

� In practice� all variables are discrete� but we treat some variables
as continuous based upon whether their distribution can be 	well
approximated
 by a continuous distribution�

Data Sources�

Data arise from experimental or observational studies� and it is important
to distinguish the two�

� In an experiment� the researcher deliberately imposes a treatment
on one or more subjects or experimental units �not necessarily hu

man�� The experimenter then measures or observes the subjects�
response to the treatment�

� Crucial element is that there is an intervention�

Example� To assess whether or not saccharine is carcinogenic� a re

searcher feeds �� mice daily doses of saccharine� After � months� �� of
the �� mice have developed tumors�

� By de�nition� this is an experiment� but not a very good one�

In the saccharine example� we don�t know whether ����� with tumors is
high because there is no control group to which comparison can be made�

Solution� Select �� more mice and treat them exactly the same but give
them daily doses of an inert substance �a placebo��
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Suppose that in the control group only � mouse develops a tumor� Is this
evidence of a carcinogenic e�ect�

Maybe� but there�s still a problem�

� What if the mice in the � groups di�er systematically� E�g�� group
� from genetic strain �� group � from genetic strain ��

Here� we don�t know whether saccharine is carcinogenic� or if genetic strain
� is simply more susceptible to tumors�

� We say that the e�ects of genetic strain and saccharine are con�
founded �mixed up��

Solution� Starting with �� relatively homogeneous �similar� mice� ran

domly assign �� to the saccharine treatment� and �� to the control treat

ment�

� Randomization an extremely important aspect of experimental de

sign�

� In the saccharine example� we should start out with �� homoge

neous mice� but of course they will di�er some� Randomization
ensures that the two experimental groups will be probabilisti�
cally alike with respect to all nuisance variables �potential
confounders�� E�g�� the distribution of body weights should be
about the same in the two groups�
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Another important concept� especially in human experimentation� is blind�
ing�

� An experiment is blind if the subjects don�t know which treatment
they receive�

� E�g�� suppose we randomize �� of �� migraine su�erers to an active
drug and the remaining �� to a placebo control treatment�

� Experiment is blind if pills in the two treatment groups look
and taste identical and subjects are not told which treatment
they receive�

� This guards against the placebo e�ect�

� An experiment is double�blind if the researcher who administers
the treatments and measures the response does not know which treat

ment is assigned�

� Guards against experimenter e�ects� �Experimenter may
behave di�erently toward the subjects in the two groups� or
measure the response di�erently in the two groups��

Experiments are to be contrasted with observational studies�

� No intervention�

� Data collected on an existing system�

� Less expensive�
� Easier logistically�
� More often ethically practical�
� Interventions often not possible�

� Experiments have many advantages and are strongly preferred when
possible� However� experiments are rarely feasible in public health�epidemiology�

� In health sciences�medicine� experiments involving humans are
called clinical trials�
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Types of Observational Studies�

�� Case studies or case series�

� A descriptive account of interesting characteristics �e�g�� symp

toms� observed in a single case �subject with disease� or in a
sample of cases�

� Typically are unplanned and don�t involve any research hy

potheses� No comparison group�

� Poor design� but can generate research hypotheses for subse

quent investigation�

�� Case
control study�

� Conducted retrospectively �by looking into past��

� Two types of subjects included�

cases � subjects with the disease�outcome of interest

controls � subjects without the disease�outcome

� History of two groups is examined to determine which subjects
were exposed to� or otherwise possessed� a prior characteristic�
Association between exposure and disease then quanti�ed�

� Controls are often matched to cases based on similar charac

teristics�

� Advantages�

� Useful for studying rare disease�
� Useful for studying diseases with long latency periods�
� Can explore several potential risk factors �exposures� for dis

ease simultaneously�

� Can use existing data sources 
 cheap� quick� easy to conduct�

� Disadvantages�

� Prone to methodological errors and biases�
� Dependent on high quality records�
� Di�cult to select an appropriate control group�
� More di�cult statistical methods required for proper analysis�
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�� Cross
sectional Studies�

� Collect data from a group of subjects at one point in time�

� Sometimes called prevalence studies� due to their focus on a single
point in time�

� Advantages�

� Often based on a sample of the general population� not just
people seeking medical care�

� Can be carried out over a relatively short period of time�

� Disadvantages�

� Di�cult to separate cause and e�ect because measurement of
exposure and disease are made at one point in time� so it may
not be possible to determine which came �rst�

� Are biased toward detecting cases with disease of long duration
and can involve misclassi�cations of cases in remission or under
e�ective medical treatment�

� Snapshot in time can be misleading in a variety of other ways�
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�� Cohort Studies�

� Usually conducted prospectively �forward in time��

� A cohort is a group of people who have something in common
at a particular point in time and who remain part of the group
through time�

� A cohort of disease
free subjects are selected and their exposure
status evaluated at the start of the study�

� They are then followed through time in order to observe who
develops disease� Association between exposures �risk factors�
and disease are then quanti�ed�

� Advantages�

� Useful when exposure of interest is rare�
� Can examine multiple e�ects �e�g�� diseases� of a single expo


sure�
� Can elucidate temporal relationship between exposure and dis


ease� thereby getting closer to causation�
� Allows direct measurement of incidence of disease�
� Minimizes bias in ascertainment of exposure�

� Disadvantages�

� Ine�cient for studying rare diseases�
� Generally requires a large number of subjects�
� Expensive and time
consuming�
� Subjects can be lost to follow
up �drop out of study� leading
to bias�

� Cohort studies can also be conducted retrospectively by identifying
a cohort in present� determining exposure status in past� and then
determining subsequent disease occurrence between time of exposure
and present through historical records�

��



Data Presentation�

Even quite small data sets are di�cult to comprehend without some sum

marization� Statistical quantities such as the mean and variance can be
extremely helpful in summarizing data� but �rst we discuss tabular and
graphical summaries�

Tables�

One of the most important means of summarizing the data from a single
variable is to tabulate the frequency distribution of the variable�

� A frequency distribution simply tells how often a variable takes on
each of its possible values� For quantitative variables with many
possible values� the possible values are typically binned or grouped
into intervals�

Example � Gender in this Class �Nominal Variable��

Relative Relative
Frequency Frequency

Gender Frequency �proportion� �percent�

Female
Male

Total

� Here� the relative frequency as a proportion is just

Relative frequency �proportion� � Frequency�n

where n �sample size�

� The relative frequency as a percent is

Relative Frequency �percent� � Relative frequency �proportion������

� It is worth distinguishing between the empirical relative frequency
distribution� which gives the proportion or percentage of observed
values� and the probability distribution� which gives the probability
that a random variable takes each of its possible values�

� The latter can be thought of as the relative frequency distri

bution for an in�nite sample size�
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Example � Keypunching Errors �Discrete Quantitative Variable��

A typist entered ��� lines of data into a computer� The following table
gives the number of errors made for each line�

Number of Relative
Errors Frequency Frequency ���

� ���
� ��
� �

� or more �

Total

� Here� it was not necessary to bin the data�
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Example � Age at Death �in Days� for SIDS Cases�

The following table contains the age at death in days for �� cases of sudden
infant death syndrome �SIDS� or Crib Death� occuring in King County�
WA� during ����������

Cumulative
Age Interval Relative Cumulative Relative

�Days� Frequency Frequency ��� Frequency Frequency ���

���� � ���� � ����
����� �� ����� �� �����
����� �� ����� �� �����
������ �� ����� �� �����
������� � ���� �� �����
������� � ���� �� �����
������� � ���� �� �����
������� � ���� �� �����
������� � � �� �����
������� � ���� �� �����
������� � ���� �� ������

� Here it is necessary to bin the data� The bins should be

� Mutually exclusive �non
overlapping��
� Exhaustive �every observed value falls in a bin�
� The handling of cutpoints between bins should be consistent
and clearly de�ned�

� �preferrably� The bins should be of equal width� although it
can be better to violate this rule sometimes� especially for the
smallest and largest bins�
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� In this example we have also tabulated the cumulative frequency and
the cumulative relative frequency� The cumulative frequency simply
counts the number of observations � the current value �or current
bin if the data are binned��

� The cumulative relative frequency expresses the same informa

tion as a percent by multiplying by ����

n
�

Graphs�

Frequency distributions can often be displayed e�ectively using graphical
means such as the bar chart� pie chart� or histogram�

� Pie charts are useful for displaying the relative frequency distribution
of a nomianl variable� Here is an example created in Minitab of the
relative frequency distribution of the school a�liation of students in
this class�

� A legend� or key is important in many di�erent graph types� but is
especially crucial in a pie chart�
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� Bar charts display absolute or relative frequency distributions for
categorical variables �ordinal or nominal�� Here is a Minitab bar
chart of the school a�liations of students in this class�

� Note that the horizontal axis in a bar chart has no scale� The cate

gories can be re
ordered arbitrarily without a�ecting the information
contained in the plot�

A histogram depicts the frequency distribution of a quantitative random
variable� Below is a histogram of the Age at Death data for the �� SIDS
cases in King Co�� WA�
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� Histograms are sometimes constructed so that the height of each bar
gives the frequency �or relative frequence� in each interval� This is
ok if the intervals all have the same width� but can be misleading
otherwise�

� Here�s an example of what can go wrong with unequal bins
when frequency or relative frequency is plotted�

� The above example can be �xed by making the relative frequency
in each interval equal to the area in each bar� not the height� That
is� the height of each bar should be equal to Rel Freq�Bin Width�
Here�s a �xed version of the histogram given above�
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Note that the choice of number of bins and bin width can a�ect histograms
dramatically� Here�s a di�erent choice of bins for the SIDS data �a bad
choice��

� It is not easy to give a general rule on how many bins should be used
in a histogram� but somewhere between � and �� bins is typically
avisable�

Frequency polygons are formed by plotting lines between the midpoints
of the tops of the bars of a histogram� The histogram should have equal
bin widths and the lines should extend down to � at the right and left
extremes of the data�

� Here is a frequency polygon for the SIDS data� Its principle ad

vantages are that �i� it is continuous� and �ii� multiple frequency
polygons can be displayed on the same plot�

��



A one�way scatter plot is just a plot of the real line with tick marks� or
sometimes dots� at each observed value of the variable� Here is a one
way
scatter plot� or dotplot� for the SIDS data

Another plot useful for summarizing the distribution of a single variable
is the boxplot�

A boxplot summarizes the distribution of a variable by locating the ��th�
��th and ��th percentiles of the data� plus two adjacent values�

� A pth percentile of a data set is a number such that at least p� of
the data are � this value and at least ���� p� of the values are �
this value�

� The median is the ��th percentile�
� The ��th� ��th and ��th percentiles are sometimes called the
�rst� second� and third quartiles of the data�

� The box in a boxplot extends from the ��th to the ��th percentiles
of the data� The line in the box locates the median�

��



Here is a boxplot for the SIDS data� This boxplot also includes a one
way
scatterplot of the data�

� The lines extending on either side of the box are called whiskers�
They indicate roughly the extent of the data�

� The whiskers sometimes extend to the ��th and ��th per

centiles�

� In Minitab�s implementation of a boxplot� however� the whiskers
extend to the adjactent values� which are de�ned to be the most
extreme values in the data set that are not more than ��� times
the width of the box beyond either quartile�

� The width of the box is the distance between the �rst and third
quartile� This distance is called the interquartile range�

� The term outlier is used to refer to data points that are not typical
of the rest of the values� Exactly what constitutes 	not typical
 is
somewhat controversial� but one way to de�ne an outlier is as a point
beyond the adjacent values�

� Based on this de�nition there are four large outliers in the SIDS
data �marked by ��s� and no small outliers�
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There are a variety of tabular and graphical methods to summarize the
joint frequency distribution of two variables�

For two qualitative variables� a contingency table or cross�tabulation
is useful�

� This is just a table where the rows represent the values of one vari

able� the columns the values of the other variable� and the cells give
the frequency with which each combination of values is observed�

Here is a contingency table giving the joint frequency distribution of
grmhem �germinal matrix hemorrhage� and tox �diagnosis of toxemia for
mother� for the low birth weight data�

Toxemia

Germinal
Hemorrhage
No Yes

No �� �� ��

Yes �� � ��

�� �� ���

� Notice that the margins of the table give the univariate frequency
distributions of the two variables�

Cross
tabulations can be constructed when one or more of the variables
are quantitative� In this case� it may be necessary to bin the quantitative
variable�s�� E�g�� here is a cross
tab of gestage �gestastional age� and
grmhem�

Gestational Age

Germinal
Hemorrhage
No Yes

����� � � ��

����� �� � ��

����� �� � ��

����� �� � ��

� �� � � �

�� �� ���
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For displaying the relationship between a quantitative variable and a qual

itative variable� side
by
side boxplots or superimposed frequency polygons
can be useful�

The most useful graphical tool for displaying the relationship between two
quantitative variables is a two�way scatterplot� Here is one that displays
systolic blood pressure vs� gestational age for the low birth weight data�

Line graphs are useful when a variable is measured at each of many con

secutive points in time �or some other dimension like depth of the ocean��
In such a situation it is useful to construct a scatterplot with the measured
variable on the vertical axis and time on the horizontal� Connecting the
points gives a sense of the time trend and any other temporal pattern �e�g��
seasonality��

� Above is a line graph displaying US Life Expectancies over time�
Male and female life expectancies are plotted on the same graph
here�
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Numerical Summary Measures�

In talking about numerical summary measures� it is useful to distinguish
between whether a particular quantity �such as the mean� is computed on
a sample or on an entire population�

Sometimes� we have data on all units �e�g�� subjects� in which we have
interest� That is� we have observations on the entire population�

� E�g�� the diameters of the nine planets of the solar system are

Planet Diameter �miles�

Mercury ����
Venus ����
Earth ����
Mars ����

Jupiter �����
Saturn �����
Uranus �����

Neptune �����
Pluto ����

� The mean diameter of the � planets is

����� � ���� � � � �� ������� � ��� ������ miles�

Summary measures such as the mean and variance are certainly useful for
such data� but it is important to realize that there is no need to estimate
anything here or to perform statistical inference�

� The mean diameter of the � planets in our solar system is ���������
miles� This is a population quantity or parameter that can be
computed from direct measurements on all population elements�

� Read Ch�� of our text�
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In contrast� the more common situation is one in which we can�t observe
the entire population� Instead we select a subset of the population called
a sample� chosen to be representative of the population of interest�

Summary measures computed on the sample are used to make statistical
inference on the corresponding population quantities�

� That is� we don�t know the parameter� so we estimate its value from
a sample� quantify the uncertainty in that estimate� test hypotheses
about the parameter value� etc�

� E�g�� we don�t know the proportion of US registered voters who ap

prove of President Bush�s job performance� so we take a representa

tive sample of the population of size ������ say� and ask each sample
member whether they approve� The proportion of these ����� sam

ple members who approve �a sample statistic� is used to estimate the
corresponding proportion of the total US population �the parame

ter��

� Note that this estimate will almost certainly be wrong� One of
the major tasks of statistical inference is in determining how
wrong it is likely to be�

��



Notation�

Random variables will be denoted by Roman letters �e�g�� x� y��

Sample quantities� Roman letters �e�g�� mean� x� variance�s��
Population quantities� Greek letters �e�g�� mean� �� variance� ����

Suppose we have a sample on which we measure a random variable that
we�ll call x �e�g�� age at death for �� SIDS cases��

���� ���� ���� ���� � � � � ��� ��

A convenient way to refer to these numbers is as x�� x�� � � � � xn where n is
the sample size� Here�

x� � ���� x� � ���� x� � ���� � � � � x�� � ��� x�� � ���

Summation notation� many statistical formulas involve summing a series
of number like this� so it is convenient to have a shorthand notation for
x� � x� � � � �� xn� Such a sum is denoted by

Pn

i�� xi� That is�

nX
i��

xi � x� � x� � � � �� xn�

Similarly�

�X
i��

��xi � yi�
� � ��x� � y��

� � ��x� � y��
� � ��x� � y��

��
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Measures of Location�

Mean� The sample mean measures the location or central tendency
of the observations in the sample� For a sample x�� � � � � xn� the mean is
denoted by  x and is computed via the formula

 x �
�

n
�x� � x� � � � �� xn� �

�

n

nX
i��

xi�

� The mean gives the point of balance for a histogram of the sample
values and is a�ected by every value in the sample�

� Sample mean for age at death� SIDS cases�

 x �
�

��

��X
i��

xi �
�

��
���� � ��� � � � �� ��� � �����

� The population mean is the same quantity computed on all the ele

ments in the population�

� In the SIDS example� the population is not clearly de�ned� We
may think of the SIDS cases in ������� in King Co� Washing

ton as representative of the entire US or of similar metropolitan
areas in the US at that point in time� or as representative of
King County at points in time other than ��������

� The mean is not an appropriate measure for ordinal or nomianl vari

ables�
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Median� One feature of the mean that is sometimes undesirable is that
it is a�ected by every value in the data set� In particular� this means that
it is sensitive to extreme values� which at times may not be typical of the
data set as a whole�

� The median does not have this feature� and is therefore sometimes
more appropriate for conveying the 	typical
 value in a data set�

The median is de�ned as the ��th percentile or middle value of a data set�
That is� the median is a value such that at least half of the data are greater
than or equal to it and at least half are less than or equal to it�

� If n is odd� this de�nition leads to a unique median which is an
observed value in the data set�

E�g�� � health insurance claims �dollar amounts��

data� ����� ����� ���� ���� ���� ������� ���� ����� ����

sorted data� ���� ���� ���� ���� ����� ����� ����� ����� ������

� median � ����� whereas the mean � ��� ������

� If n is even� there are two 	middle values
 and either middle value or
any number in between would satisfy the de�nition� By convention
we take the average of the two middle values�

sorted data� ���� ���� ���� ����� ����� ����� ����� ������

� median � ����� � ������� � ����

� Notice that the median is una�ected by the size of the largest claim�

� The median is appropriate for ordinal qualitative data as well as
quantitative data�
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Mode� The mode is simply the most commonly occurring value� This
quantity is not unique� there may be multiple modes�

� In the insurance claims data� all values were distinct� so all values
were modes�

� A histogram of the apgar� data is given below� From this plot it is
easy to see that the mode is �� The mean is ���� and the median is
��

� The mode is especially useful for describing qualitative variables or
quantitative variables that take on a small number of possible values�

� The modal gender in this class is female� The modal academic
program a�liation is BHSI�

� If two values occur more than others but equally frequently� we say
the data are bimodal� or more generally multimodal�

� The term bimodal is also sometimes used to describe distribu

tions in which there are two peaks� not necessarily of the same
height� E�g��
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Percentiles� Earlier� we noted that the median is the ��th percentile� We
gave the de�nition of a percentile on p���� A procedure for obtaining the
pth percentile of a data set of size n is as follows�

Step �� Arrange the data in ascending �increasing� order�

Step �� Compute an index i as follows� i � p

���n�

Step ��

� If i is an integer� the pth percentile is the average of the ith and
�i� ��th smallest data values�

� If i is not an integer then round i up to the nearest integer and
take the value at that postion�

� For example� consider the � insurance claims again�

sorted data� ���� ���� ���� ���� ����� ����� ����� ����� ������

� For the p � ��th percentile� i � pn���� � ��������� � ���
Round up to �� so that the ��th percentile is the �rst sorted
value� or ����

� For the p � ��th percentile� i � pn���� � ��������� � �����
Round up to �� so that the ��th percentile is the seventh sorted
value� or �����

� Percentiles not only give locate the center of a distribution �e�g�� the
median�� but also other locations in a distribution�
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Measures of Dispersion�

The two most important aspects of a unimodal distribution are the location
�or central tendency� and the spread �or dispersion��

� E�g�� consider the time it takes to commute to work by car� train�
and bike� Suppose these are the distributions of commute time by
these modes of transportation�

Comparison Location Spread

Train ! Car Same Di�erent
Train ! Bike Di�erent Same
Car ! Bike Di�erent Di�erent

Measures of Dispersion� Range� Interquartile Range� Variance and Stan

dard Deviation� Coe�cient of Variation�
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Range� The range is simple the maximum value minus the minimum
value in the data set�

range � max�min�

� The range of the � insurance claims was ���� ���� ��� � ���� ����

Inter�quartile Range� The range only depends upon the minimum and
maximum� so it is heavily in"uenced by the extremes�

� That is� the range may not re"ect the spread in most of the data�

The inter
quartile range is the di�erence between the third quartile ���th
��ile� and the �rst quartile ���th ��ile�� That is�

IQR � Q� �Q��

� For the insurance claim data� we computed the ��th ��ile as Q� �
����� To get the ��th percentile� i � pn���� � �� � ����� � �����
Rounding up� we take the third smallest value� or Q� � ���� Thus

IQR � #����� #��� � #����
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Variance and Standard Deviation� The most important measures of
dispersion are the variance and its square root� the standard deviation�

� Since the variance is just the square of the standard deviation� these
quantities contain essentially the same information� just on di�erent
scales�

The range and IQR each take only two data points into account�

How might we measure the spread in the data accounting for the
value of every observation�

Consider the insurance claim data again�

Observation
Number �i� xi  x xi �  x �xi �  x��

� ���� �������� 
������� ����������
� ���� �������� 
������� ����������
� ��� �������� 
������� ����������
� ��� �������� 
������� ����������
� ��� �������� 
������� ����������
� ������ �������� �������� �������E���
� ��� �������� 
������� ����������
� ���� �������� 
������� ����������
� ���� �������� 
������� ����������

Sum� ������ � �������E���
Mean� �������� � �����������
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One way to measure spread is to calculate the mean and then determine
how far each observation is from the mean�

Mean�  x �
�

n

	X
i��

xi �
�

�
����� � ���� � � � �� ����� � ���������

How far an observation is from the mean is quanti�ed by the di�erence
between that observation and the mean� xi�  x� In the entire data set� we
have � of these�

x� �  x� x� �  x� � � � � x	 �  x�

One idea is to compute the average of these deviations from the mean�
That is� compute

�

�
f�x� �  x� � �x� �  x� � � � �� �x	 �  x�g � �

�

	X
i��

�xi �  x��

Problem�
Pn

i���xi �  x� � � �always���

� Deviations from the mean always necessarily sum to zero� The pos

itive and negative values cancel each other out�

Solution� Make all of the deviations from the mean positive by squaring
them before averaging�

That is� compute

�x� �  x��� �x� �  x��� � � � � �x	 �  x��

and then average� This gives the quantity

�

�

	X
i��

�xi �  x�� � ������������
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If x�� x�� � � � � x	 is the entire population� then  x � �� the population mean�
and the population size is N � �� In this case� our formula becomes

�

N

NX
i��

�xi � ����

which is called the population variance of x�� � � � � xN � and is usually
denoted by ���

Why is this called �� rather than �� Why the � exponent�

Because this is the average squared deviation from the mean �in the claims
data example� the units of this quantity are squared dollars��

� To put the variance on the same scale as the original data� we some

times prefer to work with the population standard deviation
which is denoted as � and is just the square root of the population
variance ���

population standard deviation� � �
p
�� �

vuut �

N

NX
i��

�xi � ����

Suppose now that x�� � � � � xn are sample values�

How do we compute a sample variance to estimate the population
variance� ���

We could simply use �
n

Pn

i���xi �  x��� However� for reasons we�ll discuss
later� it turns out that it is better to de�ne the sample variance as

sample variance� s� �
�

n� �

nX
i��

�xi �  x��

� The sample standard deviation is simply the square root of this quan

tity�

sample standard deviation� s �
p
s� �

vuut �

n� �

nX
i��

�xi �  x���
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� The sample variance of the � insurance claims is

s� �
�

n� �

nX
i��

�xi �  x�� �
�

�� �
f�x� �  x�� � � � � �x	 �  x��g

� ����������� �squared dollars�

and the sample standard deviation is

s �
p
����������� � #���� ������

A Note on Computation�

The formula for s� that we just presented�

s� �
�

n� �

nX
i��

�xi �  x���

conveys clearly the logic of the standard deviation� it is an average �in
some sense� of the squared deviations from the mean� However� it is not
a good formula to use for computing the SD because it

� is hard to use� and
� it tends to lead to round
o� errors�

For computing� an equivalent but better formula is

s� �
�
Pn

i�� x
�
i � � n x�

n� �
�

� When using this formula or any other that requires a series of calcu

lations� keep all intermediate steps in the memory of your calculator
until the end to avoid round
o� errors�
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Coe�cient of Variation� In some cases the variance of a variable
changes with its mean�

� For example� suppose we are measuring the weights of children of
various ages�

� year old children �relatively light� on average�
�� year old children �much heaver� on average�

Clearly� there�s much more variability in the weights of �� year olds�
but a valid question to ask is 	Do �� year old children�s weights have
more variabilty relative to their average�


The coe�cient of variation allows such comparisons to be made�

population CV �
�

�
� �����

sample CV �
s

 x
� �����

� From current CDC data available on the web� I obtained standard
deviations and means for the weights �in kg� of � and �� year old
male children as follows�

Age s  x CV

� ���� ����� ����
�� ����� ����� ����

� Thus� �� year olds� weights are more variable relative to their average
weight than � year olds�

� Note that the CV is a unitless quantity�
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Mean and Variance �or SD� for Grouped Data�

� Example 	 Lead Content in Boston Drinking Water

Consider the following data on the lead content �mg�liter� in ��
samples of drinking water in the city of Boston� MA�

data� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����

sorted data� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����

� Notice that there are some values here that occur more than once�

Consider how the mean is calculated in such a situation�

 x �
���� � ���� � ���� � ���� � ���� � ���� � � � �� ����

��
� ����

�
������� � ������� � ������� � ������� � � � �� �������

��� � ��� � ��� � ��� � � � �� ���

�

Pk

i��mifiPk

i�� fi

where
k � the number of distinct values in the data

mi � the ith distinct value

fi � the frequency with which mi occurs

Similarly� consider the sample variance�

s� �

�
������ ������ � ������ ������ � ������ ������ � ������ ������ � ������ �������

� � �� ������ ������
�
����� �� � ����

�
������ ��������� � ������ ��������� � ������ ��������� � � � �� ������ ���������

$��� � ��� � ��� � � � �� ���%� �

�

Pk

i���mi �  x��fi

$
Pk

i�� fi%� �

��



� Another Example� Apgar Scores of Low Birthweight Infants

Here is a frequency distribution of the Apgar scores for ��� low
birthweight infants in data set lowbwt�

Apgar Score Frequency

� �
� �
� �
� �
� �
� ��
� ��
� ��
� ��
� ��

Total� ���

Using the formula for the mean for grouped data we have

 x �

Pk

i��mifiPk

i�� fi

�
���� � ���� � ���� � � � �� �����

���
� ����

which agrees with the value we reported previously for these data�

Similarly� the sample SD is

s �

vuutPk

i���mi �  x��fi

$
Pk

i�� fi%� �

�

r
��� ��������� � ��� ��������� � ��� ��������� � � � �� ��� ����������

���� �

� ����
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z�Scores and Chebychev
s Inequality�

The National Center for Health Statistics at the CDC gives the following
estimate of the body mass index � weight

height�
� for �� year old boys�

 x � �����

Suppose that a particular �� year old boy� Fred� has a BMI equal to ���

How overweight is Fred�

We know he is heavier than average for his age�gender group� but how
much heavier�

� Relative to the variability in BMI for �� year old boys in general�
Fred�s BMI may be close to the mean or far away�

Case �� Suppose s � ���

� This implies that the typical deviation from the mean is about ���
Fred�s deviation from the mean is ����� so Fred doesn�t seem to be
unusually heavy�

Case �� Suppose s � ��

� This implies that the typical deviation from the mean is about ��
Fred�s deviation from the mean is ����� so Fred does seems to be
unusually heavy�

� Thus� the extremeness of Fred�s BMI is quanti�ed by its distance
from the mean BMI relative to the SD of BMI�

��



The z
score gives us this kind of information�

zi �
xi �  x

s

where
xi � value of the variable of interest for subject i�

 x � sample mean

s � sample standard deviation

Case �� z � �
��	���
�� � ����� Fred�s BMI is ���� SD�s above the mean�

Case �� z � �
��	���
� � ������ Fred�s BMI is ����� SD�s above the mean�

� From NCHS data� the true SD for �� year old boys is s � ����� So�
Fred�s BMI is z � �
��	���

���� � ���� SD�s above the mean�

How extreme is a z score of �� �� 	
���

An exact answer to this question depends upon the distribution of the
variable you are interested in�

However� a partial answer that applies to any variable is provided by
Chebychev�s inequality�
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Chebychev�s Theorem� At least
�
�� �

k�

�� ���� of the values of any vari

able must be within k SDs of the mean� for any k � ��

This results implies �for example��

� At least ��� of the observations must be within � SDs� since for
k � ��
�� �

k�

�
� ���� �

�
�� �

��

�
� ���� �

�
�� �

�

�
� ���� � ����

� For the BMI example� we�d expect at least ��� of �� year old
males to have BMIs between  x� �s � ������ ������� � �����
and  x� �s � ����� � ������� � ������

� At least ��� of the observations must be within � SDs� since for
k � ��
�� �

k�

�
� ���� �

�
�� �

��

�
� ���� �

�
�� �

�

�
� ���� � ����

� For the BMI example� we�d expect at least ��� of �� year old
males to have BMIs between  x � �s � ����� � ������� � ����
and  x� �s � ����� � ������� � ������

� Note that Chebychev�s Thm just gives a lower bound on the per

centage falling within k SDs of the mean� At least ��� should fall
within � SDs� but perhaps more�

� Since it only gives a bound and not a more exact statement
about a distribution� Chebychev�s Thm is of limited practical
value�
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We can make a much more precise statement if we know that the distribu

tion of the variable in which we�re interest is bell
shaped� That is� shaped
roughly like this�

A bell-shaped distribution for X, say

x=value of X
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Another bell-shaped distribution for Y, say

y=value of Y
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� Think of the above pictures as idealized histograms as the sample
size grows toward in�nity�

� One particular bell
shaped distribution is the normal distribution�
which is also known as the Gaussian distribution�

� The normal distribution is particularly important in statistics�
but it is not the only possible bell
shaped distribution� The
distribution above left is normal� the one above right is similar�
but not exactly normal �notice di�erence in the tails��
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For data that follow the normal distribution� the following precise state

ments can be made�

� Excatly ��� of the observations lie within � SD of the mean�

� Exactly ��� of the observations lie within � SDs of the mean�

� Exactly ����� of the observations lie within � SDs of the mean�

In fact� for normally distributed data we can calculate the percentage of
the observations that fall in any range whatsoever�

This is very helpful if we know our data are normally distributed�

However� even if the data aren�t known to be exactly normal� but are
known to be bell
shaped� then the exact results stated above will be ap

proximately true� This is known as the empirical rule�

Empirical rule� for data following a bell
shaped distribution�

� Approximately ��� of the observations will fall with � SD of the
mean�

� Approximately ��� of the observations will fall with � SDs of the
mean�

� Nearly all of the observations will fall with � SDs of the mean�
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BMIs of �� Year�old Boys�

� At age ��� suppose that BMI follows an approximately bell
shaped
distribution�

� Then we would expect approximately ��� of �� year old boys
to have BMIs falling in the interval ������� ������ �  x 	 �s�
Fred�s BMI was ��� so his BMI is more extreme than two
thirds
of boys his age�

� We would expect ��� of �� year
old boys to have BMIs falling
in the interval ������� ������ �  x 	 �s and nearly all to fall in
the interval ������ ������ �  x	�s� �Compare these results with
the Chebychev bounds��

� In fact� BMI is probably not quite bell
shaped for �� year olds� It
may be for � year olds� but by age ��� there are many obese children
who probably skew the distribution to the right �lots of large values
in the right tail�� Therefore� the empirical rule may be somewhat
inaccurate for this variable�
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Introduction to Probability�

� Note� we�re going to skip ch�s � ! � for now� but we�ll come back to
them later�

We all have an intuitive notion of probability�

� 	There�s a ��� chance of rain today�


� 	The odds of Smarty Jones winning the Kentucky Derby are � to ��


� 	The chances of winning the Pick
� Lottery game are � in ��� mil

lion�


� 	The probability of being dealt four of a kind in a � card poker hand
is �������


All of these statements are examples of quantifying the uncertainty in a
random phenomenon� We�ll refer to the random phenomenon of interest
as the experiment� but don�t confuse this use with an experiment as a type
of research study�

� The experiments in the examples above are

� An observation of today�s weather
� The results of the Kentucky Derby
� A single play of the Pick
� Lottery game
� The rank of a �
card poker hand dealt from a shu&ed deck of

cards

� Read Ch�� of our text�
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An experiment generates an outcome through some random process�

Experiment Outcome

Weather Rains� Does not rain
Kentucky Derby Smarty Jones wins� places� shows����� does not �nish
Lottery Win� Lose
Poker Hand Royal Flush� Straight Flush� Four
of
a
kind� ���

� Set of outcomes is called the sample space and should consist of
mutually exclusive� exhaustive set of outcomes�

An event is some description of the outcome of an experiment whose
probability is of interest�

� A variety of events can be de�ned based on the outcome of a given
experiment�

� E�g�� Events that could be de�ned regarding the outcome of the
Kentucky Derby�

� Smarty Jones �nishes
� Smarty Jones �nishes third or better �wins� places� or shows�
� Smarty Jones wins�

� Events of interest need not be mutually exclusive or exhaustive�

� The terms 	chance�s�
� 	likelihood
� and 	probability
 are basically
synonymous ways to describe the probability of an event� We denote
the probability of an event A by

P �A�

� The odds of an event describes probability too� but is a bit
di�erent� The odds of an event A are de�ned as

odds�A� �
P �A�

P �Ac�
�

where Ac denotes the event that A does not occur� which is
known as the complement of A�
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A number of di�erent operations can be de�ned on events�

� One is the complement� Ac denotes the event that A does not occur�

� The union of events A and B is denoted

A 
B�
The union of A and B is the event that A occurs or B occurs �or
both��

� 
 can be read as 	or
 �inclusive��

� The intersection of events A and B is denoted

A �B�
The intersection of A and B is the event that A occurs and B occurs�

� � can be read as 	and
�

The following Venn diagrams describe these operations pictorially�
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There are a number of legitimate ways to assign probabilities to events�

� the classical method
� the relative frequency method
� the subjective method

Whatever method we use� we require

�� The probability assigned to each experimental outcome must be be

tween � and � �inclusive�� That is� if Oi represents the ith possible
outcome� we must have

� � P �Oi� � �� for all i�

� Probabilities are between � and �� but they are often expressed
as percentages by multiplying by ����� That is� to say there
is a ��� chance of rain is the same as saying the chance of rain
is ����

�� The sum of the probabilities for all experimental outcomes must
equal �� That is� for n mutually exclusive� exhaustive outcomes
O�� � � � � On� we must have

P �O�� � P �O�� � � � �� P �On� � ��

Classical Method� When all n experimental outcomes are equally likely�
we assign eqach outcome a probability of ��n�

� E�g�� when tossing a fair coin� there are n � � equally likely outcomes�
each with probability ��n � ����

� E�g�� If we pick a card from a well
shu&ed deck and observe its suit�
then there are n � � possible outcomes� so

P ��� � P �
� � P ��� � P ��� � ��n � ����
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The classical method is really a special case of the more general Relative
Frequency Method� The probability of an event is the relative frequency
with which that event occurs if we were to repeat the experiment a very
large number of times under identical circumstances�

� I�e�� if the event A occurs m times in n identical replications of an
experiment� then

P �A� �
m

n
when n���

� Suppose that the gender ratio at birth is ������ That is� suppose
that giving birth to a boy and giving birth to a girl are equaly likely
events� Then by the clasical method

P �Girl� �
�

�
�

This is also the long run relative frequency� As n � � we should
expect that

number of girls

number of births
� �

�
�

There are several rules of probability associated with the union� intersec

tion� and complement operations on events�

Addition Rule� For two events A and B

P �A 
B� � P �A� � P �B�� P �A �B��

Venn Diagram�
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Example Consider the experiment of having two children and let

A � event that �rst child is a girl

B � event that second child is a girl

� Assume P �A� � P �B� � ��� �doesn�t depend on birth order and
gender of second child not in"uenced by gender of �rst child��

Then the probability of having at least one girl is

P �A 
B� � P �A� � P �B�� P �A �B� �
�

�
�

�

�
� P �A �B�

But what�s P �A �B� here�

One way to determine this is by enumerating the set of equally likely
outcomes of the underlying experiment here�

The experiment is observing the genders of two children� It has sample
space �set of possible outcomes��

f�M�M�� �M�F �� �F�M�� �F� F �g
which are all equally likely �have probability ��� each��

� The probability of an event is the sum of the probabilities of the
outcomes satisfying the event�s de�nition�

Here� the event A �B corresponds to the outcome �F� F � so

P �A �B� �
�

�

and

P �A 
B� �
�

�
�

�

�
� �

�
�

�

�

� Notice that this agrees with the answer we would have obtained by
summing the probabilities of the outcomes corresponding to at least
one girl�

P �A
B� � Pf�M�F �g�Pf�F�M�g�Pf�F� F �g � �

�
�

�

�
�

�

�
�

�

�
�

��



Complement Rule� For an event A and its complement Ac

P �Ac� � �� P �A��

� This is simply a consequence of the addition rule and the facts that

P �A 
Ac� � P �entire sample space� � ��

and P �A �Ac� � P �A and not A occur� � �

Thus� by the addition rule

� � P �A 
Ac� � P �A� � P �Ac�� P �A �Ac�� �z 	
��

� P �A� � P �Ac�

� P �A� � �� P �Ac�

A third rule is the multiplication rule� but for that we need the de�nitions
of conditional probability and statistical independence�
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Conditional Probability�

For some events� whether or not one event has occurred is clearly relevant
to the probability that a second event will occur�

� We just computed that the probability of having at least one girl in
two births as �

� �

Now suppose I know that my �rst child was a boy�

� Clearly� knowing that I�ve had a boy a�ects the chances of having at
least one girl �it decreases them�� Such a probability is known as a
conditional probability�

The conditional proabability of an event A given that another event B has
occurred is denoted P �AjB� where j is read as 	given
�

Independence of Events Two events A and B are independent if know

ing that B has occurred gives no information relevant to whether or not
A will occur �and vice versa�� In symbols A and B are independent if

P �AjB� � P �A��

Multiplication Rule� The joint probability of two events P �A � B� is
given by

P �A �B� � P �AjB�P �B��

or since the A and B can switch places

P �A �B� � P �B �A� � P �BjA�P �A�

� Note that this relationship can also be written as

P �AjB� �
P �A �B�

P �B�

as long as P �B� �� �� or

P �BjA� � P �B �A�
P �A�

�
P �A �B�

P �A�

as long as P �A� �� ��

��



Example� Again� the probability of having at least one girl in two births
is �

� � Now suppose the �rst child is known to be a boy� and the second
child�s gender is unknown�

What is the conditional probability of at least one girl given that the
�rst child is a boy�

Again� let
A � event that �rst child is a girl

B � event that second child is a girl

Then we are interested here in P �A 
BjAc��

By the multiplication rule

P �A 
BjAc� �
Pf�A 
B� � Acg

P �Ac�
�

We known that the probability that the �rst child is a girl is P �A� � �
� �

so

P �Ac� � �� P �A� � �� �

�
�

�

�
�

In addition� the probability in the numerator� Pf�A 
 B� � Acg� is the
probability that at least one child is a girl �the event A 
B� and the �rst
child is a boy �the event Ac��

Both of these events can happen simultaneously only if the �rst child is
a boy and the second child is a girl� That is� only if the outcome of the
experiment is f�M�F �g� Thus�

Pf�A 
B� �Acg � P �Ac �B� � Pf�M�F �g � �

�
�

Therefore� the conditional probability of at least one girl given that the
�rst child is a boy is

P �A 
BjAc� �
Pf�A 
B� �Acg

P �Ac�
�

���

���
�

�

�
�

��



Another Example�

Suppose that among US adults� � in � obese individuals has high blood
pressure� while � in � normal weight individuals has high blood pressure�

Suppose also that the percentage of US adults who are obese� or preva�
lence of obesity� is ����

What is the probability that a randomly selected US adult is obese
and has high blood pressure�

Let

A � event that a randomly selected US adult is obese

B � event that a randomly selected US adult has high b�p�

Then the information given above is

P �A� �
�

�
P �BjA� � �

�
P �BjAc� �

�

�
�

By the multiplication rule� the probability that a randomly selected US
adult is obese and has high blood pressure is

P �A �B� � P �B �A� � P �BjA�P �A� �

�
�

�

��
�

�

�
�

�

��
�

��



Note that in general given that an event A has occurred� either B occurs� or
Bc must occur� so the complement rule applies to conditional probabilities
too�

P �BcjA� � �� P �BjA��

With this insight in hand� we can compute all other joint probabilities
relating to obesity and high blood pressure�

� The probability that a randomly selected US adult is obese and does
not have high blood pressure is

P �A�Bc� � P �Bc�A� � P �BcjA�P �A� � $��P �BjA�%P �A� �

�
�

�

��
�

�

�
�

�

��
�

� The probability that a randomly selected US adult is not obese and
does have high blood pressure is

P �Ac�B� � P �B�Ac� � P �BjAc�P �Ac� � P �BjAc�$��P �A�% �

�
�

�

��
�

�

�
�

�

��
�

� The probability that a randomly selected US adult is not obese and
does not have high blood pressure is

P �Ac�Bc� � P �Bc�Ac� � P �BcjAc�P �Ac� � $��P �BjAc�%$��P �A�% �

�
�

�

��
�

�

�
�

��

��
�

These results can be summarized in a table of joint probabilities�

High B�P�

Obese
Yes �event A� No �event �Ac�

Yes �event B� �
�


�
�


�	
��


No �event Bc� �
�


��
�


��
��


�
�
 � �



��
�
 � �


 �

��



Independence� Two events A and B are said to be independent if
knowing whether or not A has occurred tells us nothing about whether or
not B has or will occur and vice versa�

In symbols� A and B are independent if

P �AjB� � P �A� and P �BjA� � P �B��

� Note that under independence of A and B� the multiplication rule
becomes

P �A �B� � P �AjB�P �B� � P �A�P �B�

and the addition rule becomes

P �A
B� � P �A��P �B��P �A�B� � P �A��P �B��P �A�P �B��

� Note also that the terms mutually exclusive and independent are
often confused� but they mean di�erent things�

� Mutually exclusive events A and B are events that can�t hap

pen simultaneously� Therefore� if I know A has occurred� that
tells me something about B� namely� that B can�t have oc

curred� So mutually exclusive events are necessarily depen�
dent �not independent��

Obesity and High Blood Pressure Example� The fact that obesity and
high b�p� are not independent can be veri�ed by checking that

�

�
� P �BjA� �� P �B� �

��

���
�

Alternatively� we can check independence by checking whether P �A�B� �
P �A�P �B�� In this example�

������ �
�

��
� P �A �B� �� P �A�P �B� �

�
�

�

��
��

���

�
� ������

��



Bayes
 Theorem�

We have seen that when two eventsA andB are dependent� then P �AjB� ��
P �A��

� That is� the information that B has occurred a�ects the probability
that A will occur�

Bayes� Theorem provides a way to use new information �event B has oc

curred� to go from our probability before the new information was available
�P �A�� which is called the prior probability� to a probability that takes
the new information into account �P �AjB�� which is called the posterior
probability��

� Bayes� Theorem allows us to take the information about P �A� and
P �BjA� and compute P �AjB��

Obesity and High B�P� Example�

Recall

A � event that a randomly selected US adult is obese

B � event that a randomly selected US adult has high b�p�

and

P �A� �
�

�
P �BjA� � �

�
P �BjAc� �

�

�
�

Suppose that I am a doctor seeing the chart of a patient� and the only
information contained there is that the patient has high b�p�

Assuming this patient is randomly selected from the US adult pop	
ulation� what is the probability that the patient is obese�

That is� what is P �AjB��

��



By the multiplication rule� we know that

P �AjB� �
P �A �B�

P �B�
� ���

Let�s examine the numerator and denominator of this expression and see
if we can use the information available to compute these quantities�

First� notice that the denominator is P �B�� the probability of high blood
pressure� If a random subject has high b�p�� then the subject either

a� has high b�p� and is obese� or
b� has high b�p� and is not obese�

That is�
B � �B �A� 
 �B �Ac�

so� by the addition rule

P �B� � P �B �A� � P �B �Ac�� Pf�B �A� � �B �Ac�g� �z 	
��

Therefore�
P �B� � P �B �A� � P �B �Ac��

� This relationship is sometimes called the law of total probability� and
is just based on the idea that if B occurs� it has to occur with either
A or Ac�

So� now ��� becomes

P �AjB� �
P �A �B�

P �B �A� � P �B �Ac�
� ����

��



Now consider the numerator� P �A � B�� By the multiplication rule and
using the fact that �A �B� � �B �A�� we have

P �A �B� � P �B �A� � P �BjA�P �A��

which is useul because we know these quantities�

Applying the same logic to the two joint probabilities in the denominator
of ����� we have that

P �B �A� � P �BjA�P �A� and P �B �Ac� � P �BjAc�P �Ac��

Therefore� ���� becomes

P �AjB� �
P �BjA�P �A�

P �BjA�P �A� � P �BjAc�P �Ac�
� �y�

� Equation �y� is known as Bayes� Theorem�

In the example� Bayes� Theorem tells us that the probability that the high
b�p� patient is obese is

P �AjB� �
P �BjA�P �A�

P �BjA�P �A� � P �BjAc�P �Ac�

�
����������

���������� � ����������
�

����

������
� �����

��



In the example above� we used the law of total probability to compute
P �B� as

P �B� � P �B �A� � P �B �Ac� � P �BjA�P �A� � P �BjAc�P �Ac�

where A and Ac were mutually exclusive� exhaustive events�

� Bayes� Theorem generalizes to apply to the situation in which we
have several mutually exclusive� exhaustive events�

Let A�� A�� � � � � Ak be k mutually exclusive� exhaustive events� Then for
any of the events Ai� i � �� � � � � k� Bayes� Theorem becomes�

P �AijB� �
P �BjAi�P �Ai�

P �BjA��P �A�� � P �BjA��P �A�� � � � �P �BjAk�P �Ak�
�

��



Another Example � Obesity and Smoking Status�

Let

B � event that a randomly selected US adult is obese

A� � event that a randomly selected US adult has never smoked

A� � event that a randomly selected US adult is an ex
smoker

A� � event that a randomly selected US adult is a current smoker

and suppose

P �B� � ����� P �BjA�� � ����� P �BjA�� � ����� P �BjA�� � ����

P �A�� � ������ P �A�� � ������ P �A�� � ������

Given that a randomly selected US adult is obese� what�s the prob	
ability that he
she is a former smoker�

By Bayes� Theorem

P �A�jB� �
P �BjA��P �A��

P �BjA��P �A�� � P �BjA��P �A�� � P �BjA��P �A��

�
������������

������������ � ������������ � ������������
� ����

� Note that the denominator is just P �B�� so since we happen to know
P �B� here� we could have simpli�ed our calculations as

P �A�jB� �
P �BjA��P �A��

P �B�

�
������������

����
� ����

��



Diagnostic Tests

One important application of Bayes� Theorem is to diagnostic or screening
tests�

� Screening is the application of a test to individuals who have not
yet exhibited any clinical symptoms in order to classify them with
respect to their probability of having a particular disease�

� Examples� Mammograms for breast cancer� Pap smears for cer

vical cancer� Prostate
Speci�c Antigen �PSA� Test for prostate
cancer� exercise stress test for coronary heart disease� etc�

Consider the problem of detecting the presence or absence of a particular
disease or condition�

Suppose there is a 	gold standard
 method that is always correct�

� E�g�� surgery� biopsy� autopsy� or other expensive� time
consuming
and�or unpleasant method�

Suppose there is also a quick� inexpensive screening test�

� Ideally� the test should correctly classify individuals as positive or
negative for the disease� In practice� however� tests are subject to
misclassi�cation errors�

��



De�nitions�

� A test result is a true positive if it is positive and the individual
has the disease�

� A test result is a true negative if it is negative and the individual
does not have the disease�

� A test result is a false positive if it is positive and the individual
does not have the disease�

� A test result is a false negative if it is negative and the individual
does have the disease�

� The sensitivity of a test is the conditional probability that the test
is positive� given that the individual has the disease�

� The speci
city of a test is the conditional probability that the test
is negative� given that the individual does not have the disease�

� The predictive value of a positive test is the conditional prob

ability that an individual has the disease� given that the test is pos

itive�

� The predictive value of a negative test is the conditional prob

ability that an individual does not have the disease� given that the
test is negative�

Notation� Let

A � event that a random individual�s test is positive

B � event that a random individual has the disease

Then

sensitivity � predictive value positive �

speci�city � predicitve value negative �

��



Estimating the Properties of a Screening Test�

Suppose data are obtained to evaluate a screening test where the true
disease status of each patient is known� Such data may be displayed as
follows�

Test Result

Truth
Diseased �event B� Not Diseased �event Bc�

� �event A� a b n��

� �event Ac� c d n��

n
�� n

�� n

What properties of the screening test can be estimated if the data
are obtained�


� from a random sample of n subjects�

�� from random samples of n
�� diseased and n

�� nondiseased subjects�

�� from random samples of n�� subjects with positive test results and
n�� subjects with negative results�

��



�� Suppose a random sample of n subjects is obtained� and each subject
is tested via both the screening test and the gold standard�

In this case�

estimated sensitivity �

estimated speci�city �

estimated predictive value positive �

estimated predictive value negative �

�� Suppose that random samples of n
�� diseased and n

�� nondiseased
subjects are obtained� and each subject is tested with the screening
test�

In this case�

estimated sensitivity �

estimated speci�city �

but predictive value positive and negative cannot be estimated di

rectly without additional information about the probability �preva

lence� of disease�

�� Suppose now that random samples of n�� subjects with positive
screening test results and n�� subjects with negative screening test
results are obtained� Each subject is then tested with the gold stan

dard approach�

In this case�

estimated predictive value positive �

estimated predictive value negative �

but sensitivity and speci�city cannot be estimated directly without
additional information about the probability of a positive test result�

��



Notice that only in case � is it possible to obtain estimates of all four
quantities from simple proportions in the contingency table�

� However� this approach is not particularly quick� easy or e�cient be

cause� for a rare disease� it will require a large n to obtain a su�cient
sample of truly diseased subjects�

� Approach � is generally easiest� and predictive values can be com

puted from this approach using Bayes� Theorem if the prevalence of
the disease is known as well�

Suppose we take approach �� As before� let

A � event that a random individual�s test is positive

B � event that a random individual has the disease

Suppose P �B�� the prevalence of disease� is known� In addition� suppose
the sensitivity P �AjB� and speci�city P �AcjBc� are known �or have been
estimated as on the previous page��

Then� according to Bayes� Theorem� P �BjA�� the predictive value of a
positive test result� is given by

P �BjA� � P �AjB�P �B�

P �AjB�P �B� � P �AjBc�P �Bc�

Similarly� P �BcjAc�� the predictive value of a negative test result� is given
by

P �BcjAc� �
P �AcjBc�P �Bc�

P �AcjBc�P �Bc� � P �AcjB�P �B�

��



Suppose that a new screening test for diabetes has been developed� To
establish its properties� n

�� � ��� known diabetics and n
�� � ��� known

non
diabetics were tested with the screening test� The following data were
obtained�

Test Result

Truth
Diabetic �event B� Nondiabetic �event Bc�

� �event A� �� ��

� �event Ac� �� ��

��� ���

� Suppose that it is known that the prevalence of diabetes is P �B� �
��� �����

� The sensitivity P �AjB� here is estimated to be ������ � ���
� The speci�city P �AcjBc� here is estimated to be ������ � ���

From the previous page� the predictive value positive is

P �BjA� � P �AjB�P �B�

P �AjB�P �B� � P �AjBc�P �Bc�
�

Therefore� the estimated predictive value positive is

estimated P �BjA� � ���������

��������� � ��� ������ ����
� ����

� This result says that if you�ve tested positive with this test� then
there�s an estimated chance of ����� that you have diabetes�

��



ROC Curves�

There is an inherent trade
o� between sensitivity and speci�city�

Example � CT Scans The following data are ratings of computed
tomography �CT� scans by a single radiologist in a sample of ��� subjects
with possible neurological problems� The true status of these patients is
also known�

Radiologist�s Rating

True Disease
Status

Normal Abnormal

� �� � ��

� � � �

� � � �

� �� �� ��

� � �� ��

�� �� ���

Here� the radiologist�s rating is an ordered categorical variable where

� � de�nitely normal

� � probably normal

� � questionable

� � probably abnormal

� � de�nitely abnormal

If the CT scan is to be used as a screening device for detecting
neurological abnormalities� where should the cut	o� be set for the diagnosis
of abnormality�

��



Suppose we diagnose every patient with a rating � � as abnormal�

� Obviously� we will catch all true abnormals this way' the sensitivity
of this test will be ��

� However� we�ll also categorize all normals as abnormal ' the speci

�city will be ��

Suppose we diagnose every patient with a rating � � as normal�

� Obviously� we won�t incorrectly diagnose any normals as abnormal
' the speci�city will be ��

� However� we won�t detect any true abnormalities ' the sensitivity
of this test will be ��

Clearly� we�d prefer to use some threshold between � and � to diagnose
abnormality�

� We can always increase the sensitivity by setting the threshold high�
but this will decrease the speci�city�

� Similarly� a low threshold will increase the speci�city at the cost of
sensitivity�

��



For each possible threshold value� we can compute the sensitivity and
speci�city as follows�

Test Positive Criterion Sensitivity Speci�city

� � ���� ����
� � ���� ����
� � ���� ����
� � ���� ����
� � ���� ����
� � ���� ����

A plot of the sensitivity versus �� � speci�city� is called a receiver op�
erating characteristic curve� or ROC curve� The ROC curve for this
example is as follows�

� An ROC curve is often used to help determine an appropriate thresh

old for a screening test� The point closest to the upper
left corner of
the plot has the highest combination of sensitivity and speci�city�

� In this example� the ROC curve suggests that we use a rating
� � to classify patients as abnormal�

� The dashed line in this plot shows where there are equal probabilities
of a false positive and a false negative� smallskip

� A test falling on this line misclassi�es normal subjects with the
same frequency with which it misclassi�es abnormal subjects�

� Such a test classi�es no better than chance� and thus has no
predicitve value�

��



Estimation of Prevalence from a Screening Test�

Suppose we apply a screening test with known sensitivity and speci�city
to a new population for which the prevalence of the disease is unknown�

Without applying the gold standard test� can we estimate the preva	
lence�

Let�s reconsider the diabetes example� Recall how we de�ned events�

A � event that a random individual�s test is positive

B � event that a random individual has the disease

Previously� we obtained

estimated sensitivity � ��� � dP �AjB�

estimated speci�city � ��� � dP �AcjBc��

�hats indicate that these are estimated quantities��

Recall also that we knew the prevalence of diabetes to be ����

However� now suppose that this prevalence value was for the US population
and we decide now to apply the screening value in Canada�

Suppose that we screen n � ��� Canadians with our screening test and
we obtain n�� � ��� positive test results�

Test Result

Truth
Diseased �B� Not Diseased �Bc�

� �A� � � n�� � ���

� �Ac� � � n�� � ���

� � n � ���

What is the prevalence of diabetes among Canadians�

��



Using the law of total probability followed by the multiplication rule� we
have

P �A� � P �A �B� � P �A �Bc�

� P �AjB�P �B� � P �AjBc�P �Bc�

� P �AjB�P �B� � P �AjBc�$�� P �B�%

With a little algebra� we can solve for P �B�� the prevalence of diabetes as
follows�

P �B� �
P �A�� P �AjBc�

P �AjB�� P �AjBc�
�

P �A�� $�� P �AcjBc�%

P �AjB�� $�� P �AcjBc�%

P �A�� the probability of a positive test result can be estimated as

dP �A� �
n��
n

�
���

���

and the other quantities in this expression� P �AjB� and P �AcjBc�� are the
sensitivity and speci�city of our test�

Therefore� we can estimate the prevalence of diabetes in Canada as

dP �B� �
dP �A�� $�� dP �AcjBc�%dP �AjB�� $�� dP �AcjBc�%

�
��


�� � $�� ��%

��� $�� ��%
� ����

��



Risk Di�erence� Relative Risk and Odds Ratio�

Three quantities that are often used to describe the di�erence between
the probability �or risk� of disease between two populations are the risk
di�erence� risk ratio� and odds ratio�

� We will call the two populations the exposed and unexposed popula

tions� but they could be whites and non
whites� males and females�
or any two populations �i�e�� the 	exposure
 could be being male��

�� Risk di�erence� One simple way to quantify the di�erence between
two probabilities �risks� is to take their di�erence�

Risk di�erence � P �diseasejexposed�� P �diseasejunexposed��

� Independence between exposure status and disease status corresponds
to a risk di�erence of ��

� Risk di�erence ignores the magnitude of risk� E�g�� suppose that
among males� the exposed and unexposed groups have disease risks
of ��� and ���� but among females� the exposed and unexposed groups
have risks of ��� and ����

� Risk di�erence is ��� for males and for females� Risk di�erence
does not convey the information that being exposed doubles
the risk for females�

��



�� Relative risk� �also known as risk ratio��

RR �
P �diseasejexposed�
P �diseasejunexposed�

� Independence between exposure status and disease status corresponds
to a relative risk of ��

� Relative risk especially useful for quantifying exposure e�ect for rare
diseases�

� E�g�� the probability that a man over the age of �� dies of cancer
is �������� for current smokers� and ������� for nonsmokers�

RR �
�������

�������
� ���� risk di�erence � ��������������� � ��������

� Risk di�erence and RR convey di�erent types of information 
 both
useful�

�� Odds ratio� RR takes ratio of probabilities� As an alternative to
using probability of disease� can compare odds of disease in exposed
and unexposed group� This leads to the odds ratio �OR��

OR �
odds�diseasejexposed�

odds�diseasejunexposed� �

� Recall that the odds of an event A are given by

odds�A� �
P �A�

P �Ac�
�

P �A�

�� P �A�
�

so the OR is

OR �
P �diseasejexposed��$�� P �diseasejexposed�%

P �diseasejunexposed��$�� P �diseasejunexposed�% ���

��



� Independence between exposure status and disease status corresponds
to an odds ratio of ��

� The OR conveys similar information to that of the RR� The main
advantages of the OR are that

a� It has better statistical properties� We�ll explain this later� but
for now take my word for it�

b� It can be calculated in cases when the RR cannot�

The latter advantage comes from the fact that using Bayes� Theorem�
it can be shown that

OR �
P �exposurejdiseased��$�� P �exposurejdiseased�%

P �exposurejnondiseased��$�� P �exposurejnondiseased�%
����

� I�e�� ��� and ���� are mathematically equivalent formulas�

� This equivalence is useful because in some contexts� the proba

bility of exposure can be estimated among diseased and nondis

eased but the probability of disease given exposure status can

not� This occurs in case
control studies�

��



Example � Contraceptive Use and Heart Attack

A case
control study of oral contraceptive use and heart attack� �� female
heart attack victims were identi�ed and each of these 	cases
 was matched
to one 	control
 subject of similar age� etc� who had not su�ered a heart
attack�

Contraceptive Use

Heart
Attack

Yes No

Yes �� ��

No �� ��

�� ��

In this case� the column totals are �xed by the study design� Therefore�
the probability of heart attack given whether or not oral contraceptives
have been used cannot be estimated�

Why�

� Thus� we cannot estimate the risk of disease in either the exposed
or unexposed group� and therefore cannot estimate the RR or risk
di�erence�

However� we can estimate probabilities of contraceptive use given presence
or absence of heart attack�

(P �contraceptive usejheart attack� � ����� � �����

(P �contraceptive usejno heart attack� � ����� � �����

And from these quantities we can estimate the odds ratio�

dOR �
��

�

�
�� ��


�

�
��

�

�
�� ��


�

� �

�
��

�

� �
��

�

��
��

�

� �
�


�

� �
������

������
� ������

� Interpretation� The odds of heart attack are ��� times higher for
women who took oral contraceptives than for women who did not�
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Theoretical Probability Distributions�

Probability Distributions�

Some de�nitions�

� A variable is any characteristic that can be measured or observed
and which may vary �or di�er� among the units measured or ob

served�

� A random variable is a variable that takes on di�erent numerical
values according to a chance mechanism

� E�g�� any variable measured on the elements of a randomly
selected sample�

� Discrete random variables are random variables that can take
on a �nite or countable number of possible outcomes �e�g��
number of pregnancies��

� A continuous random variable can �theoretically� at least� take
on any value in a continuum or interval �BMI��

� A probability function is a function which assigns a probability
to each possible value that can be assumed by a discrete random
variable�

The probability function of a discrete random variable �r�v���

� de�nes all possible values of the r�v�

� gives the probabilities with which the r�v� takes on each of
those values�

� Read Ch�� of our text�

��



Example Let X �the number of ears a�ected by one or more episodes of
otitis media �ear infection� during the �rst two years of life� Suppose the
probability distribution function for this random variable is

x P �X � x�

� ���
� ���
� ���

� The notation used above is typical� Here� big X is the random
variable� little x is a particular value of the random variable� and we
are giving the probability that the random variable X takes on the
value x for each possible x�

� Note that values of x that are not listed are assumed to have prob

ability ��

� Of course� the probability function must assign valid probabilities�
In particular�

� when summed over all possible values� the probabilities must
sum to �� X

all x

P �X � x� � ��

� and each probability must be between � and ��

� � P �X � x� � � for all x�

� Probability functions can be given in tables as above� or graphs �e�g��
a bar graph�� or as a mathematical formula�

The probability function allows computation of probabilities for events
de�ned in terms of the random variable�

� E�g�� by the addition rule� the probability of having at least one ear
infection during the �rst two years of life is

P �X � �� � P �X � � 
X � ��

� P �X � �� � P �X � ��� P �X � � �X � ��� �z 	
��

� ��� � ��� � ���

��



Expected Value� Variance

The expected value of a random variable is the mean� or average value
of the r�v� over the population of units on which the r�v� is de�ned�

� For a random variableX� its expected value is usually denoted E�X��
or �X � or simply ��

The expected value for a discrete r�v� can be computed from its probability
distribution as follows�

E�X� �
X
all x

xP �X � x��

where this sum is taken over all possible values x of the r�v� X�

� E�g�� the expected number of ears a�ected by ear infection during
the �rst two years of life is computed as follows�

x P �X � x� xP �X � x�

� ��� ������
� ��� ������
� ��� ������

E�X� � ����

� Interpretation� the mean number of ears a�ected by otitis me

dia during the �rst two years of life is �����

��



The variance of a random variable is the population variance of the r�v�
over the population of units on which the r�v� is de�ned�

� The variance of X is usually denoted var�X�� or ��X � or simply ���

� The formula for the variance of a random variable involves taking
expectations�

var�X� � Ef�X � �X��g�
which� for a discrete r�v� simpli�es to

var�X� �
X
all x

�x � �X��P �X � x��

where again this sum is taken over all possible values x of the r�v�
X�

� E�g�� the variance of the number of ears a�ected by ear infection
during the �rst two years of life is computed as follows�

x P �X � x� �X �x� �X��P �X � x�

� ��� ���� ��� �����������
� ��� ���� ��� �����������
� ��� ���� ��� �����������

var�X� � ����

� The population standard deviation of X is �x �
p
��X or

p
���� �

���� in our example�
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The Binomial Probability Distribution

Many random variables that can be described as event counts where there
is a max number of events that can occur� can be thought of as arising
from a binomial experiment�

A binomial experiment has the following properties�

�� The experiment consists of a sequence of n identical trials�

�� Two outcomes are possible on each trial� one a 	success
 and the
other a 	failure
�

�� The probability of success� denoted by p� is the same for each trial�

� Since the probability of a failure is just �� p� this means that
the failure probability is the same for each trial as well�

�� The trials are independent �what happens on one trial doesn�t a�ect
what happens on any other trial��

In a binomial experiment we are interested in X� the r�v� de�ned to be
the total number of successes that occur over the n trials�

� Note that 	success
 and 	failure
 are just convenient labels� A suc

cess could be identi�ed as the birth of a girl� and failure as the birth
of a boy� or vice versa� That is� 	success
 simply denotes the event
of interest that is being counted�

� X in a binomial trial is a discrete random variable with possible
values �� �� �� � � � � n�

For any experiment with the above properties� X will necessarily have a
particular distribution� the binomial probability distribution that is
completely determined by n and p�

Examples�

A� The number of heads that occur in � coin "ips

�� Each coin "ip is an identical trial�
�� Two outcomes �Heads�Tails� are possible� where 	success
�

Heads�
�� Probability of success� P �Heads� � ��� on each trial�
�� Coin "ips are independent�

��



B� The number of obese subjects out of � randomly selected US adults�

�� Observing obesity status of each randomly selected US adult
is an identical trial�

�� Two outcomes are possible �obese� not obese� where 	success

� subject is obese�

�� Probability of success� P �obese� � ���� on each trial�
�� Because selection of subjects is at random� obesity status is

independent from subject to subject�

Counter Examples�

C� The number of lifetime miscarriages experienced by a randomly se

lected woman over the age of ��� Suppose the woman had had �
lifetime pregnancies�

�� The n � � pregnancies are the trials� but they are not identi

cal� They occur at di�erent ages� under di�erent circumstances
�woman�s health status di�ers� environmental exposures di�er�
fathers may di�er� etc���

�� Two outcomes are possible �miscarriage� not miscarriage� where
	success
 � miscarriage�

�� Probability of success not constant on each trial� Probability of
miscarriage may be higher when woman is older� may depend
on birth order� etc�

�� Pregnancy outcome may not be independent from one preg

nancy to the next �if previous pregnancy was a miscarriage�
that may increase the probability that next pregnancy will be
miscarriage��

D� Out of the n hurricanes that will form in the Atlantic next year� how
many will make landfall in the state of Florida�

�� Each hurricane represents a trial� Not identical�
�� Two outcomes possible �hit FL� not hit FL�� 	Success
 � hit

FL�
�� Probabilities of hitting Florida may not be constant from hur


ricane to hurricane depending upon when and where they form�
but a priori� it may be reasonable to assume that these prob

abilities are equal from one hurricane to the next�

�� Hurricane paths are probably not independent� If the previous
hurricane hit FL� that may increase the chances that the next
hurricane will follow the same path and hit FL as well�

��



For any binomial experiment� the probability of any given number of 	suc

cesses
 out of n trials is given by the binomial probability function�

Let the random variable X � the number of successes out of n trials�
where p is the success probability on each trial� Then the probability of x
successes is given by

P �X � x� �

�
n

x

�
px��� p�n�x�

� Here�
�
n

x

�
�read 	n choose x� is shorthand notation for n


x
�n�x�
 where

a� �	a factorial
� is given by

a� � a�a� ���a� �� � � � ������� and� by convention we de�ne�� � ��

For example� to compute the probability of � heads out of � coin "ips�
n � �� p � �

� � X � number of heads� where we are interested in X � x
where x � ��

Then the binomial probability function says that

P �X � �� �

�
n

x

�
px��� p�n�x �

n�

x��n� x��
px��� p�n�x

�
��

����� ���

�
�

�

���
�� �

�

����

�
����������

f���������gf���g
�
�

�

���
�

�

��

� �

�
�

�

��

� ����

Where does this formula come from�
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Let�s consider example B�

Let X �number of obese subjects out of n � � randomly chosen US adults
where p � �����

Forgetting the formula for a minute� how could we compute P �X � ���
say�

One way is to list all of the possible outcomes of the experiment of ob

serving � subjects and add up the probabilities for the outcomes that
correspond to � obese subjects�

Possible outcomes�

Outcome First Second Third Probability
Number Subject Subject Subject of Outcome

� O O O
� O O N
� O N O
� O N N
� N O O
� N O N
� N N O
� N N N

� Outcomes �� �� and � corresponse to getting a total of X � � obese
subjects out of n � �� What are the probabilitites of these three
outcomes�

Probability of �O�O�N��

� Recall that for independent events� the joint probability of the events
is the product of the individual probabilities of each event� Here�
whether the subject is obese is independent from subject to subject�

So� the probability of observing �O�O�N� is

p� p� ��� p� � p���� p�� � px��� p�n�x

where n � �� x � ��
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Probability of �O�N�O��

p� ��� p�� p � p���� p�� � px��� p�n�x

where n � �� x � ��

Probability of �N�O�O��

��� p�� p� p � p���� p�� � px��� p�n�x

where n � �� x � ��

Adding the probabilities of these mutually exclusive events together �ad

dition rule� we get

P �X � �� � p���� p�� � p���� p�� � p���� p�� � �p���� p��

where for n � �� x � ��
n

x

�
�

�
�

�

�
�

��

����� ���
�

�������

f������gf���g � ��

� ���� is the number of ways to arrange a sequence with � )O�s and �
)N��

� More generally�
�
n

x

�
gives the number of ways to choose x objects out

of n to be of one type and n� x to be of the other type�

� So� the probability of � obese subjects out of � randomly selected
subjects is�
n

x

�
px���p�n�x �

�
�

�

�
������������������ � ������������������� � ������

��



The binomial formula can be used to compute the probability of x successes
out of n trials where the success probability on each trial is p for any value
of n and p�

However� it is convenient to have a table to give the answer for any given
value of n and p� or� even better� a computer function that allows us to
input n and p and outputs the answer�

� Table A�� in Appendix A of our book gives binomial probabilities
for selected values of n and p�

E�g�� we computed the probability of x � � heads out of n � � coin "ips
to be ���� Table A�� uses k instead of x� so we look up n � � and k � � on
the left side of the table� p � �� on the top and �nd the probability equals
����� just as we computed�

� Note that the table only gives selected values of p where p � ���

What if we are interested in p � ���� say�

We can handle such a case by considering the number of failures rather
than the number of successes�

That is� if X equals the number of successes out of n trials with success
probability p� then

Y � n�X � number of failures�

where the failure probability is q � � � p� We observe X � x successes
out of n trials if and only if we observe Y � n� x failures� So�

P �X � x� � P �Y � n� x� �

�
n

n� x

�
qn�x��� q�n��n�x�

�

�
n

n� x

�
qn�x��� q�x�

��



Example Suppose that ��� of UGA undergraduates are women� In a
random sample of � UGA undergraduates� what�s the probability that �
of them are women�

Here X � number of women �success� out of n � � 	trials
 where prob

ability of woman on each trial is p � ���� If x � � women are observed�
then we necessarily have observed Y � n � x � �� � � � men where the
probability of observing a man is

q � �� p � �� ��� � ����

So� the desired probability can be computed based on X�

P �X � �� �

�
n

x

�
px��� p�n�x �

�
�

�

�
��������� �������

�
���������������������

f���������gf������������g �����
���� ����� � �����

or� equivalently� based on Y �

P �Y � �� �

�
�

�

�
��������� �������

�
���������������������

f������������gf���������g �����
���� ����� � �����

� The latter probability is tabulated in Appendix A��� but the former
is not�

In addition� computer programs give binomial probabilities too� These
have the advantage that they give the result for any value of n and p�

� In Minitab� select

Calc � Probability Distributions � Binomial���

Then select 	Probability
� and enter values for 	Number of trials

and 	Probability of success
� The value of x desired can be input
under 	Input constant
 or can be selected from data in a worksheet�

��



The binomial probability function gives the P �X � x� for all possible
values of x� �� �� �� � � � � n� So� the probability function gives the entire
probability distribution of X�

Once we know the probability distribution of a discrete r�v�� we can com

pute its expected value and variance�

Recall�

E�X� �
X
all x

xP �X � x�

� �P �X � �� � �P �X � �� � � � �� nP �X � n� � �X

and

var�X� �
X
all x

�x� �X��P �X � x�

� ��� �X��P �X � �� � � � �� �n� �X��P �X � n� � ��X

Fortunately� these formulas simplify for the binomial distribution so that
we don�t have to compute P �X � ��� � � � � P �X � n��

In a binomial experiment with n trials� each with success probability p�
the number of successes X has the following expected value and variance�

E�X� � np

var�X� � np��� p�

��



Example � Obesity Again

Suppose I take a random sample of n � � US adults� How many obese
subjects should I expect to observe on average�

Here n � �� p � ����� so I expect to observe

E�X� � np � ������� � �����

obese adults out of a sample of n � ��

� In a sample of n � ����� I�d expect to observe np � ���������� � ���
obese adults� �Make sense��

The variance of the number of obese adults observed out of n � ����
would be

var�X� � np��� p� � ������������� ����� � �������

That is� the standard deviation is
p
������� � �����

� The interpretation here is that I could select n � ���� US adults
and count the number of obese subjects over and over again� Over
the long run� the standard deviation of the number of obese subjects
observed when repeating this binomial experiment again and again
is �����

� That is� I expect to get about ��� out of ���� obese subjects�
but the actual number obtained is going to vary around ����
with typical deviation from ��� equal to �����

��



The Poisson Probability Distribution

Another important discrete probability distribution that arisesoften in
practice is the Poisson probability distribution�

� The binomial probability function gave the probability for the num

ber of successes out of n trials�

� Pertains to counts �of the number of successes� that are subject
to an upper bound n�

� The Poisson probability function gives the probability for the num

ber of events that occur in a given interval �often a period of time�
assuming that events occur at a constant rate during that interval�

� pertains to counts that are unbounded� Any number of events
could� theoretically occur during the period of interest�

� In the binomial case� we know p � probability of the event �success�
in each trial�

� In the Poisson case� we know � � the mean �or expected� number of
events that occur in the interval�

� Or� equivalently� we could know the rate of events per unit of
time� Then �� the mean number of events during an interval
of length t would just be t� rate�

Example � Tra�c Accidents�

Based on long
run tra�c history� suppose that we know that an average
of � tra�c accidents per month occur at Broad and Lumpkin� That is�
� � � per month� We assume this value is constant throughout the year�

What�s the probability that in a given month we observe exactly �
accidents�

Such probabilities can be computed by the Poisson probability function�
If X � the number of events that occur according to a Poisson experiment
with mean �� then

P �X � x� �
e���x

x�
�

� Here� e denotes the base of the natural logarithm function� This is
a constant �like �� equal to ������� � � ��

��



In the example� the probability of getting exactly � accidents in a month
is

P �X � �� �
e���x

x�
�

e����

��
� �����

� Poisson probabilities are tabulated in Table A�� of Appendix A of
our text� They also may be computed in computer programs like
Minitab�

Often we are interested in cumulative probabilities�

� For example� we may be interested in the probability that we have
no more than � accidents in a given month�

A probability P �X � x� like this can be computed simply by summing up
P �X � ��� P �X � ��� � � � � P �X � x��

� In this example� the probability of no more than � accidents in a
month is given by

P �X � �� � P �X � �� � � � �� P �X � ��

�
e����

��
� � � �� e����

��
� ������� � � � �� ���� � �����

Fortunately� computer programs like Minitab usually have functions
for cumulative probabilities like this so that the individual probabil

ities need not be computed separately and then summed�

� Of course� if I were interested in knowing the probability of having
more than x accidents in a month I could get that via

P �X � x� � �� P �X � x�

So� for example� the probability of having � or more accidents in a
month is �� ���� � �����

� Cumulative binomial probabilities can be computed in the same way
as Poisson cumulative probabilities� That is� the formulas

P �X � x� � P �X � ���� � ��P �X � x� and P �X � x� � ��P �X � x�

hold for X a binomial outcome as well�

��



� The Poisson distribution has the remarkable property that its ex

pected value �mean� and variance are the same� That is� for X
following a Poisson distribution with mean ��

E�X� � var�X� � �

� For binomial experiments involving rare events �small p� and large
values of n� the distribution of X � the number of success out of
n trials is binomial� but it is also well approximated by the Poisson
distribution with mean � � np�

E�g�� Suppose that the prevalence of testicular cancer among US males is
�������� Suppose we take a random sample of n � ��� ��� male subjects�
Then the probability of observing � or fewer males with a lifetime diagnosis
of testicular cancer is given by the binomial cumulative probability�

P �X � �� � P �X � �� � P �X � �� � P �X � ��

�

�
�����

�

�
����������� ��������������� � � � ��

�
�����

�

�
����������� ���������������

� �������

This is the exact answer� but it is pretty well approximated by a Poisson
probability with mean � � np � �������������� � ����� Using the Poisson
probability function

P �X � �� � P �X � �� � P �X � �� � P �X � ��

� e����������

��
�
e����������

��
�
e����������

��
� �������
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Continuous Probability Distributions

Recall that for a discrete r�v� X� the probability function ofX gave P �X �
x� for all possible x� thus describing the entire distribution of the r�v� X�

We�d like to do the same for a continuous r�v�

How do we calculate probabilities for continuous random variables�

� For a continuous r�v�� the probability that it takes on any particular
value is �� Therefore� we can�t use a probability function to describe
it�

� E�g�� the probability that a randomly selected subject from this
class weighs ������������������������� lbs is ��

Instead of a probability function that gives the probability for each partic

ular value of X� we quantify the probability that X falls in some interval
or region of all possible values of X�

� This works because while the probability that a random student
weighs ������������������������� lbs is �� the probability that he�she
weighs between ��� and ��� lbs� say� is not ��

So� instead of describing the distribution of a continuous r�v� with a prob

ability function� we use what is called the probability density function�

� The probability density function for a continuous r�v� X gives a curve
such that the area under the curve corresponding to some interval
on the horizontal axis gives the probability that X takes a value in
that interval�

��



E�g�� suppose the probability density function for X �body weight for a
randomly selected student in this class looks like this�

Weight (lbs)

P
ro

ba
bi

lit
y 

de
ns

ity

100 150 200 250
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0.
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0.
01

5
0.
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0

0.
02

5

� The dashed vertical lines are at weight���� lbs and weight���� lbs�
The area under the curve between these lines gives the probability
that a randomly selected student weighs between ��� and ��� lbs�

� In general� the are under the curve between x� and x� where x� 	 x�
gives

P �x� 	 X 	 x��

� Note that the curve extends to the left and right� getting closer and
closer to zero�

� That is� weights greater than x lbs� say� are possible �have
nonzero probability� no matter how big x is� but they are in

creasingly unlikely as x gets bigger�

� Similarly� smaller and smaller weights are decreasingly proba

ble�

� The entire area under the probability density function is �� repre

senting the fact that

P ��� 	 X 	�� � �

��



� Note that for a continuous r�v� X� P �X � x� � � for all x� Therefore�

P �X � x� � P �X � x� � P �X 	 x� � � � P �X 	 x� � P �X 	 x��

Similarly�

P �X � x� � P �X � x� � P �X � x� � � � P �X � x� � P �X � x��

� That is� for X continuous� there�s no di�erence between 	 and
� probability statements� and also no di�erence between �
and � probability statements� Not true in the discrete case�

The Normal Distribution

Many continuous random variables have distributions such that

' values close to the mean are most probable� and values further away
from the mean are decreasingly probable �unimodal�

' values c units larger than the mean are just as probable as values
that are c units smaller than the mean �symmetry��

That is� many continuous random variables have probability distributions
that look like this�

A normal probability density with mean 0 and variance=1

x
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The probability density function or p�d�f� given above is the p�d�f� of
the normal probability distribution �sometimes called the Gaussian
probability distribution��
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� The normal distribution is not the only distribution whose p�d�f�
looks bell
shaped� but it is the most important one� and many real
world random variables follow the normal distribution� at least ap

proximately�

� The normal distribution� like the binomial and Poisson� is an example
of a parametric probability distribution� It is completely described
by a small number of parameters�

� In the case of the binomial� there were two parameters� n and
p�

� In the case of the Poisson� there was just one parameter� �� the
mean of the distribution�

� In the case of the normal� there are two parameters�

� � the mean of the distribution� and

�� � the variance of the distribution�

� That is� if X is a r�v� that follows the normal distribution� then that
means that we know exactly the shape of the p�d�f� of X except for
� � E�X�� the mean of X� and �� � var�X�� the variance of X�

� We will use the notation

X � N��� ���

to denote that the r�v� X folllows a normal distribution with
mean � and variance ���

� E�g�� X � N��� �� means that X has a normal distribution
with mean � and variance � �or SD����

� The normal curve given above has mean � and variance �� I�e�� it is
N��� ��� which is called the standard normal distribution�

��



� Normal distributions with di�erent means have di�erent locations�

� Normal distributions with di�erent variances have di�erent degrees
of spread �dispersion��

� Below are three normal probability distributions with di�erent
means and variances�

Normal probability densities with different means and variances
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The normal p�d�f� is a function of x that maps out a bell
shaped curve�
That is� it is a function f�x� that gives a probability density �a value along
the vertical axis� for each value of x �a value along the horizontal axis��

For a r�v� X � N��� ��� the speci�c mathematical form of the normal
probability density of X is

f�x� �
�p
����

e�
�x����

���

where again� e denotes the constant ���������� and � denotes the constant
�����������
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Facts about the normal distribution�

�� It is symmetric and unimodal�

� As a consequence of this� the mean� median and mode are all
equal and occur at the peak of the normal p�d�f�

�� The normal p�d�f� can be located �have mean� anywhere along the
real line between 	� and extends inde�nitely away from its mean
in either direction without ever touching the horizontal axis�

� That is� if X � N��� ���� then any value of X is possible�
although values far from � will not be very probable�

�� As with any p�d�f�� the area under the normal curve between any two
numbers x�� x� where x� 	 x� gives

P �x� 	 X 	 x��

and the total area under the p�d�f� is ��

In particular� here are a few notable normal probabilities�

� For x� � �� ��� x� � �� ���

P ��� �� 	 X 	 �� ��� � �����

That is� ������ of the time a normally distributed r�v� falls
within � SD of its mean �i�e�� has z score between 
� and ���

� For x� � �� ��� x� � �� ���

P ��� �� 	 X 	 �� ��� � �����

That is� ������ of the time a normally distributed r�v� falls
within � SDs of its mean �i�e�� has z score between 
� and ���

� For x� � �� ��� x� � �� ���

P ��� �� 	 X 	 �� ��� � �����

That is� ������ of the time a normally distributed r�v� falls
within � SDs of its mean �i�e�� has z score between 
� and ���

� These results are where the 	empical rule
 comes from�
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Example � Height

Suppose that US adult women have heights that are normally distributed
where the population mean height is �� inches and the population standard
deviation for women�s height is ��� inches�

Suppose that US adult men have heights that are normally distributed
with population mean �� inches and population SD of � inches�

Let X � the height of a randomly selected adult US woman� and Y � the
height of a randomly selected adult US man� Then

X � N��X � �
�
X� � N���� ������ Y � N��Y � �

�
Y � � N���� ����

� For women� one SD below the mean is �X���X � ��������� � �����
One SD above the mean is �X � ��X � �� � ������ � �����

� So� the probability that a randomly selected woman has height
between ���� and ���� inches is

P ����� 	 X 	 ����� � �����

������� of women have heights between ���� and ���� inches��

The height p�d�f�s for men and women are given below�

Height p.d.f.s for men and women
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� Clearly� the area under the curve between ���� and ���� inches for
men is much less than �������

� In fact the area under the male height curve between ���� and
���� inches turns out to be ����� or �������
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