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17.1. CHAPTER OBJECTIVES

It is Zeus anathema on physiological models to 
agonize between the Scylla of simulating a biologi-
cal system and the Charybdis of controlling such 
systems. This chapter aims to serve as an introduc-
tion to and overview of the interdisciplinary field 
of modeling, simulation, and control of physi-
ological systems. Research and applications in the 
area extend from cells to organs and systems, and 
include linear and nonlinear approaches having 

time-varying or time-constant variables. Although 
it is not possible to cover all of the physiological 
modeling domains in the subsequent pages, we 
have made an effort to present and briefly discuss 
the major fields of activity in which models of 
biological systems are engaged. We first provide 
an introduction to important concepts and then we 
illustrate these ideas with examples acquired from 
physiological systems. We focus on techniques 
in modeling that motivate the inclusion of con-
trol mechanisms into physiological systems and 

Konstantina S. Nikita
National Technical University of Athens, Greece

Konstantinos P. Michmizos
Massachusetts Institute of Technology, USA

Physiological Systems Modeling, 
Simulation, and Control

ABSTRACT

Physiological systems modeling, simulation, and control is a research area integrating science and 
engineering and contributes to a continuous refinement of knowledge on how the body works. The roots 
of modeling a body area date back thousands of years, yet it was not until the 1950s that the tree of 
knowledge started to be fed with data-driven hypotheses and interventions. This chapter tries to orga-
nize disparate information of the most important modeling, simulation, and control perspectives into 
a coherent set of views currently applied to modern biological and medical research. It is addressed 
to researchers on human system physiological modeling, working both in academia and in industry to 
address current and future research goals.
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models. In parallel, we provide methodological 
approaches and we discuss their advantages and 
limitations in order to motivate the reader to have 
a hands-on experience on the main modeling 
aspects covered.

17.2. INTRODUCTION

How does an organ work? What is really happen-
ing inside a diseased organ? How can we monitor 
and supervise a drug molecule to help an organ 
work in a healthy manner? What is a healthy 
manner of living for a cell, organ or body any-
ways? The motivation of modeling is convoluted 
with our distinctive characteristic of wondering. 
Models in physiology are mainly used for insight, 
description, and control. We want to know, and 
sometimes we need to learn, how the components 
of a system and their interconnections generate 
the overall operating characteristics of that sys-
tem. We also seek to capture the characteristics 
of a physiological system response accurately 
and concisely.

In practice, the physiological modeling road 
does not resemble the directional straightness of 
a roman road. Biological signals are typically 
amplitude limited and distorted by colored (i.e., 
non-white) noise. Signal recordings have limited 
length and are generally nonstationary; whereas, 
the underlying system is either unknown or very 
complex to describe. But we still need models, 
since they can verify our designs before the pro-
totype stage; and, even if they are not exactly ac-
curate, they can help us gain a basic understanding 
of the underlying system. Models of physiological 
systems often aid in the specification of design 
criteria for the design of procedures aimed at 
alleviating pathological conditions. Models also 
summarize the physiological behavior of a system 
concisely, making them an appropriate testing bed 
for a plethora of scientific hypotheses being stated. 
This has also been proven useful in the design 
of medical devices. In a clinical setting, models 

can make predictions before any intervention or 
after failures (lesions). Models can also be used to 
evaluate the functional limits of an operation, be 
it biological or that of an instrument interrelated 
with a biological system. They can also explore 
linear behavior at selected operating points. Lastly, 
physiological models provide the means (simula-
tions) to truly explore the non-linear nature of the 
biological physics.

17.3. COMPREHENSIVE 
DEFINITION OF PHYSIOLOGICAL 
SYSTEMS MODELING, 
SIMULATION, AND CONTROL

In order to start thinking about modeling a system, 
let us begin with the parable of a Saturday theater 
that is crammed to suffocation by all kinds of 
spectators. By the end of the theatrical play, each 
of the spectators is asked to talk about his/her ex-
perience. One person, sitting in the last rows of the 
theater finds that the stage design was ingenious. 
Another, having the opportunity to sit in the first 
row of the theater is amazed by the expressiveness 
of the actors. A third, positioned in a corner of the 
theater shows a tendency to talk only for specific 
scenes of the play; the ones performed near his/
her side. Each person, inside the theater, gives a 
different description of the same object; yet none 
keeps the ultimate truth in his/her hands.

Before projecting our parable to modeling, 
three aspects need to be further discussed. First, 
in the real world, we cannot go into the mind of 
the director. We do not know the script or even 
the number of the actors in the play; and what is 
more, there is no unbiased observer that holds an 
unconditional truth. Second, all spectators formed 
a personal opinion based on a hypothesis of the 
play that was consistent with the data they col-
lected. This activity, which seems easy and natural 
to humans, is called abduction. Third, abduction 
is not an infallible way for discovering truth. 
This chapter describes most of the basic tools 
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that can be used to create a quantitative formula 
of the description abducted from observations on 
physiological systems.

In essence, each spectator created a model (a 
descriptive version) of a system (the play). Let us 
introduce some main terminology at this point. A 
system may be considered to be any collection of 
interconnected processes and/or objects. A model 
is a representation that approximates the behavior 
of an actual system. This representation is descrip-
tive in a certain level of detail, for that system. By 
using a set of simplifying assumptions, the system 
is conceptually reduced to that of a mathematical 
model. Therefore, the results of each model have 
significant limitations and are valid only in the 
regimes of the real world where the assumptions 
are valid. A model is always connected to an ex-
periment from which we obtain data. To optimize 
the experiment, we need to have access to the data 
related to important variables of the model. Con-
sequently, designing and executing an experiment 
is a crucial step in modeling that usually involves 
a careful and usually time-consuming selection of 
the model’s variables. Next, we will discuss the 
two most important classes of variables for any 
modeled system: the input and the output.

The input of a system is the information or 
signals that flow into a system, and which can 
normally be manipulated independently. The 
output of the system is the information or sig-
nals that flow out of a system, and result from 
the operation of the system on the input. Both 
the input and the output can be material flows, 
voltages, temperatures, pressures, or any other 
biological signal. The information that is getting 
into the system or out of it is depicted by a physi-
cal quantity, property or condition that is being 
measured (i.e., the biological signal), usually 
called a measurand. In terms of a physiological 
system, there are various measurand accessibility 
sites, namely a) internal to the body (e.g., blood 
pressure), b) external to the body (e.g., electrocar-
diogram potential), c) emanating from the body 
(e.g., infrared radiation), or d) extracted tissue 

(e.g., blood or biopsy). Most medically important 
measurands can be grouped into five categories: 
i) biopotential (e.g., electromyography - EMG, 
electrocardiography - ECG), ii) pressure flow 
displacement (e.g., velocity, acceleration, force), 
iii) impedance, iv) temperature, and v) chemical 
concentration.

Various factors complicate the choice of bio-
logical input and output (I/O) measurands. First, 
most of the parameters that are measured in prac-
tice are quite small as compared with non-medical 
parameters in most industries. For example, most 
voltages are in the micro-volt range, and the sig-
nals are in the audio-frequency range or below. 
Many crucial I/O variables in living systems are 
also inaccessible because the proper measurand 
transducer interface cannot be achieved without 
compromising the system (e.g., cardiac output). 
Patient’s comfort is another parameter selection 
factor that is also related to the level of invasiveness 
and the safety of the patient in general. Compat-
ibility with existing equipment and the cost of the 
experiment also affect decisions on the level of 
abduction used to define a physiological model. 
Thus, there are times that a model is forced to be 
designed with less details as compared to what 
was the initial target.

Desired inputs are the physiological signals 
(i.e., the measurands) that the model is designed 
to process. In practice, they are subjected to 
two unwanted artifacts; namely, interfering and 
modifying inputs. Interfering inputs relate to how 
things are measured. They are quantities that 
inadvertently affect the data as a consequence 
of the principles used to acquire and process the 
desired inputs. Modifying inputs relate to how 
the experiment is physically built or laid out. 
They are undesired quantities that indirectly af-
fect the input by altering the performance of the 
measurement itself. They can influence both the 
desired and the interfering inputs. Some undesir-
able quantities can act as both a modifying input 
and an interfering input.
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A model needs to be tested on some quantitative 
measures that describe the goodness of fit between 
the simulated and the true data. The accuracy of 
a single model is the difference between the true 
value and the predicted value. The difference is 
sometimes divided by the true value of the quantity 
measured; this ratio is often expressed as a percent. 
However, the true value of the reference is seldom 
available. The precision of a measurement system, 
also known as reproducibility or repeatability, 
expresses the closeness of the system’s output in 
several measurement experiments made in the 
same way. Typically, this value is determined by 
statistical analysis of repeated measurements. It 
is related to the number of significant figures to 
which a measurement can be made (e.g., an output 
variable of 2.434 V is more precise than 2.43 V). 
High precision does not imply high accuracy be-
cause precision makes no comparison to the true 
value. Figure 1 illustrates the difference between 
accuracy and precision.

Physiological modeling is initiated by ex-
perimental observations of a phenomenon that 
lead to a guesstimate or a verbal description of 
the observed system. An initial hypothesis is 
formed followed by a mathematical or computa-
tional model that describes our understanding of 
the phenomenon. The accuracy of the model is 
tested by acquiring some more data and testing 
(simulating) the model against the new data. If 
the model performs adequately, the model is ready 
to serve its purpose (e.g., to replace a module of 
a control system). If the model’s accuracy does 
not meet performance specifications, then we 
need to refine the model. Additional experiments 
are carried out to acquire even more data and use 
them to update our model. Usually, some of the 
variables in the model are observable and some 
are not. Hence, the new experiments aim to pro-
vide the data that are needed in order to increase 
our understanding of the physiological system. 
The new data include information about previ-
ously unobservable variables. The process of 

Figure 1. Accuracy vs. precision of a model’s output
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refining the model using new data continues 
until a satisfactory model is obtained. Typically, 
a quantitative criterion is used to test the goodness 
of fit between the model and the data. One of the 
characteristics of a good model is how well it 
predicts the future performance of the physiolog-
ical system. The process is illustrated in Figure 
2.

Instead of a concluding remark, two important 
modeling principles are underlined: i) The starting 
point for successful physiological modeling is 
always a simple model that gains a basic under-
standing of the underlying system. If that model 
partially succeeds in capturing the known or 
anticipated behavior, then the subsequent job is 
to refine it. ii) An otherwise hidden structure of 
a biological process can become clearer if the 
process is successfully modeled with adequate 
mathematical and statistical concepts. A deep 
knowledge of the modeled structure, and of the 
way its mathematical representation responds to 
change, allows the formulation of hypotheses and 
the testing of theories that are usually not evident 
from the phenomenological descriptions of the 
system. Engineers and scientists aiming to 
model very complex behaviors, such as bio-
medical phenomena, should not escape the 
memory of these hallmark principles.

17.3.1. Diagnostic and 
Therapeutic Challenges

The results of medical or biological models serve 
three different purposes: i) to understand; to have 
a deep, profound knowledge of a real physiologi-
cal system, ii) to predict; to know the future of 
such a system that is currently unknown, and iii) 
to control; to constrain or manipulate a system 
to function inside desirable working conditions. 
In analogy to the above purposes, physiological 
models can contribute in i) diagnosis if they ac-
quire information for presentation to the human 
senses (i.e., extend the human senses), ii) therapy 
if they are used to control a physiological process 

that has gone awry due to disease, trauma or some 
other intervention, and iii) assist if they are used 
to substitute a diminished or lost function (e.g., 
robotic systems that help the paretic side of a 
patient after a stroke, for example see (Krebs & 
Hogan, 2006), or cardiac pacemaker able to predict 
and control rhythmic heart beats). Usually, these 
models have life-supporting or life-sustaining 
applications.

17.4. HISTORICAL BACKGROUND 
AND LITERATURE OVERVIEW

17.4.1. History of Modeling

The process of modeling a physiological system 
has a long history interconnected with the history 
of medicine. It was first introduced as a vague 
concept with rather philosophical roots; and, after 

Figure 2. Model refinement graph
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centuries, it acquired its scientific entity and a 
proper name. Modeling of the living world, the 
universe, has its origins in the sixth century BC 
among the Ionian Greeks of Asia Minor. At that 
time, it was mainly occupied with speculation 
about the cause of the universe, and was associ-
ated with the name of Thales of Miletus, whose 
chief successors (also sixth-century BC Milesians) 
were Anaximander and Anaximenes. The material 
principle of the universe was modeled as a single 
uncreated and imperishable substance that under-
went various modifications to produce the plethora 
of phenomena in the universe. Thales thought that 
this substance was water; Anaximander defined 
it as something indeterminate, without specific 
qualities, and Anaximenes believed it was the air. 
Around 500 BC, Alcmaeon of Croton, a Greek 
writer and philosopher, localized the brain as the 
center of understanding reality and introduced 
brain pathways by using the term channels (poroi 
– πόροι) that connected the brain to the sensory 
organs. By using a political metaphor, he was 
also the first to relate health with balance. He 
defined a healthy body as the result of equality 
(isonomia – ισονομία) of opposing powers (e.g., 
hot vs. cold) which make up the body. Empedocles 
(490 BC - 430 BC), a Greek philosopher that 
lived in Sicily, was the advocate of the segrega-
tion of the matter to four basic elements: water, 
earth, air, and fire. He was the first to consider an 
interconnection among the various compartments 
of his model of the human body. In addition to 
the four elements (which he called roots), he used 
the words love (philotis – φιλότις) to model the 
attraction of different forms of matter, and strife 
(neikos - νείκος) to account for their separation. 
He considered love and strife to be distinct sub-
stances in equilibrium, with the four elements in 
solution with them.

Interrupting centuries of superposition and 
mythology that entwined the understanding of 
the real world and the treatment of diseases, Hip-
pocrates (ca. 460 BC - ca. 370 BC) combined 
the sixth century BC philosophical trend of Asia 

Minor with Alcmaeon’s percepts and Empedocles’ 
concepts about the equilibrium to develop the 
humoral theory for human physiology (Longriff, 
1989). According to this theory, human beings are 
modeled to consist of a soul and a body, which 
contain four humors: blood, phlegm, black and 
yellow bile; humors that correspond to the four 
organs of the body: the heart, the brain, the liver and 
the spleen. These four humors were believed to be 
in continuous motion through the circulation. The 
equilibrium and the harmony of the four humors 
(eucrasia in Greek terminology) were identified 
with health. Their disequilibrium and disharmony 
(dyscrasia in Greek terminology) produces what 
is known as disease (Marketos, 1997).

For six consecutive centuries, the Hippocratic 
view of humorism that regarded the disease as a 
dynamic process, withstood the pressure of the 
Atomists’ view of the body as an interconnec-
tion of indivisible particles in which the disease 
remained a static phenomenon. Around 150 AD, 
Galenos’ understanding of anatomy and medicine, 
principally influenced by theory of humorism, 
reestablished the Hippocratic ideas of the unity 
of the organism in which the interaction with the 
environment (homeostatis) is crucial for survivor. 
His theories dominated and influenced Western 
medical science for nearly two millennia. Gale-
nos’ theory of the physiology of the circulatory 
system endured until 1628, when William Harvey 
published his treatise entitled De motu cordis, in 
which he established a model of blood circula-
tion with the heart acting as a pump (Furley & 
Wilkie, 1984). Stephen Hales, nearly a century 
later, introduced arterial elasticity and postulated 
its buffering effect on the pulsatile nature of blood 
flow (Hales, 1733). He modeled the depulsing 
effect with the fire engines of his day, in which a 
chamber with an air-filled dome, “inverted globe”, 
acted to cushion the bolus from the inlet water 
pump so that “a more nearly equal spout” flowed 
out of the nozzle. His analogy became the basis of 
the first modern cardiovascular models. In 1897, 
Stewart first measured cardiac output in intact 
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animals (Stewart, 1897), more or less affirming 
Harvey’s calculations. Krogh and Erlang, in 1919, 
presented what is believed to be the first paper 
on mathematical modeling in biomedical science 
(Krogh, 1919). About ten years later, Wiggers 
used Fourier analysis to describe intraventricular 
pressure waveforms (Wiggers, 1928).

In 1952, Alan Lloyd Hodgkin and Andrew Hux-
ley initiated the sub-cellular and cellular modeling. 
They presented a set of nonlinear ordinary differ-
ential equations that approximates the electrical 
characteristics of excitable cells such as neurons 
and cardiac myocytes. Their model explains the 
ionic mechanisms underlying the initiation and 
propagation of action potentials in the squid giant 
axon (Hodgkin & Huxley, 1952). For their work, 
they received the 1963 Nobel Prize in Physiol-
ogy or Medicine, and the Hodgkin-Huxley model 
became the “paradigm” physiological model of 
nerve excitation. A few years later, Noble presented 
the first cardiac Purkinje fiber cell model (Noble, 
1960). These two works set the foundations for the 
development of the current, quantitative approach 
to computational modeling of biological systems, 
which is thoroughly based on experimental data, 
and aims to make experimentally verifiable pre-
dictions. Together with the first physiological 
models, the methodology to acquire them began 
to develop as well. The iterative process in model 
building was first introduced by Popper, who 
pointed out that no model should be considered 
perfect. In fact, he proposed that models must 
exhibit “falsifiability” (Popper, 1959).

During the last 50 years, fuelled both by ad-
vancements of digital computers, programming 
languages, and simulation software and by the 
increasing demand in quantitative assessment 
of element interrelations in physiological sys-
tems, computational modeling of physiological 
processes and systems witnessed a remarkable 
development. Now attention is shifting toward 
integrative computational modeling in biomedi-
cal research to link the magnificent body of new 
knowledge to an understanding of how intact 

organisms function. Multidisciplinary scientific 
research spotlights the characteristics of vari-
ous physiological systems. Complex, nonlinear, 
nonhomogeneous, discontinuous, anisotropic, 
multilayered, multidimensional, etc. systems 
needed the development of analogous models 
that described them.

17.4.2. Evolution of Computer Power 
and Relation with Advancements in 
Physiological Systems Modeling

In the second half of the 20th century, biological 
models, used to describe and classify the normal 
and abnormal physiological conditions, pushed 
the researchers to descend the modeling ladder: 
from the organismal level down to the sub-cellular 
and even nuclear (gene) level. But before the use 
of digital computers, mathematical models of 
biomedical systems were either oversimplified 
or involved a great deal of hand calculation as 
described in the Hodgkin-Huxley investiga-
tions published in 1952. Since the 1980’s, the 
progressive introduction of the digital computer, 
programming languages, and simulation software 
to every lab space in laboratories across the world 
enormously shrank the time required to acquire 
data from simulation experiments. In fact, since 
the 1990’s, digital computer environment became 
the working place for any scientist; and, the terms 
modeling and simulation have almost become 
synonymous. In addition, the internet boom at 
the start of the new millennium was the major 
contributor to the international partnership among 
scientists, and allowed for time and resource 
consuming modeling projects to become feasible 
since simulations could run on multiple process-
ing sites spread throughout the world. This has 
allowed the development of much more realistic 
or homeomorphic models that include as much 
knowledge as possible about the structure and 
interrelationships of the physiological system 
without any overriding concern about the number 
of calculations.
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The development of information-gathering 
technologies and the introduction of modeling 
methodologies that incorporate large-scale data 
have facilitated a dramatic increase in the degree 
of quantification applied to modern physiological 
research. In the past few years, computational 
modeling and analysis played a critical role in 
decoding complex systems descriptions from large 
sets of noisy and sometimes redundant data, and 
in developing an engineering understanding of 
physiological systems. In November 2010, the 
search-term “modelling OR modeling” yielded 
over 111,000 entries in PubMed, with more than 
58,000 since the year 2006. Thus, almost half 
of the papers appeared in the last four years, as 
compared to the rest of the papers published in the 
preceding six decades. These developments show 
that the distance between theory (models) and 
experiment (simulations) is rapidly diminishing.

The start of the 21st century has found research-
ers working behind their computers climbing 
the simulation ladder, and composing low level 
information to gradually form a first-principles 
physiological knowledge from the low scale of the 
nucleus of a cell all the way to the level of a com-
plex organism. Various international cooperation 
projects on healthcare information systems, based 
on grid capabilities and biomedical informatics, 
among European Union (EU), North and Latin 
America, and North Africa countries, aim to cre-
ate a common health information infrastructure in 
Western countries and extend it to other regions. 
In EU, various FP6 initiatives such as SHARE 
(http://www.eu-share.org), ImmunoGrid (http://
www.immunogrid.org), SeaLife (http://www.
biotec.tu-dresden.de/sealife), and ACGT (http://
www.eu-acgt.org) have concluded successfully, 
and other FP7 initiatives, such as Sim-e-child 
(http://www.sim-e-child.org) and ActioGrid 
(http://www.action-grid.eu) have begun. At the 
planet level, HealthGrid initiative (http://initia-
tive.healthgrid.org), supported by the HealthGrid 
Association, was created to promote deployment 
of grid technologies in health.

Though models can continue to be made more 
complex, it is important to evaluate the value added 
with each stage of complexity – the model should 
be made as simple as possible to explain the data, 
but not so simple that it becomes meaningless. On 
the other hand, a model that is made too complex 
is also of little use. Such models fail to generalize 
well either due to a lack of computing resources 
(such as time and processing power), or because 
they are gradually becoming sluggish in keeping 
pace with the new knowledge that is constantly 
being added to the description of physiological 
systems. Models, currently developing, consti-
tute a pivotal point in solving the many open 
questions of human systems’ dynamics, and the 
information processing from singe cells. The 
present and forthcoming advances in biology and 
systems modeling are expected not only to further 
increase the huge amount of information coming 
from physiological studies, but also to represent 
an opportunity to help improve the well-being or 
quick healing of individuals facing health issues.

17.4.3. Presentation of Current 
Projects: The Physiome Project, The 
Virtual Physiological Human-VPH

Whereas the reductionist approach in the last 
century focused on studies of isolated systems 
aiming for the finest possible molecular and cel-
lular events, integration is becoming the most 
popular scientific term today. The remarkable 
achievement of completion of the first draft of 
the human genome sequence demonstrates the 
power of integration of the interdisciplinary 
scientific power. Following the contemporary 
trend, currently developed models aim not only 
to explicitly understand the physiological entity 
under study, but also to relate the subsystems’ 
interconnections to the systemic behavior. Scien-
tists trawl for relations in a large area extending 
from molecules, genes, proteins, cells, organs, and 
systems up to whole organisms. Interrelationships 
among biological systems span more than one 
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descriptive level, at all space and time scales. The 
aggregation of various modeling levels is achieved 
by identifying appropriate variables that can be 
omitted, averaged, or approximated. In that sense, 
a newly developed model should be placed with 
respect to a modeling hierarchy at all scales so that 
parameters in one model are the output of models 
at a finer spatial or temporal scale.

The elucidation of such multilevel models re-
lies on acquiring detailed structural and functional 
information. For instance, research on Parkinson’s 
disease is based on data ranging from the properties 
of membrane ion channels using patch clamp tech-
niques, to neuronal in vivo characteristics available 
by means of multiple microelectrodes, populations 
of neurons using stereo-electroencephalography 
or electro-corticography, up to extended brain ac-
tivities with high density electroencephalography 
and magneto-encephalography.

Nevertheless, the knowledge gathered is ham-
pered by the system’s intrinsic complexity and 
by the fact that biological mechanisms are still 
poorly understood. That is why model design, 
experimental investigations and observational 
tools have to be wisely chosen to represent con-
sistently the true system. Scientists in medicine, 
biology, physics, chemistry, applied mathematics, 
and computer and engineering science are needed 
to collaborate. Database management, recognition 
and fusion of multidimensional signals and sens-
ing devices are to provide the means to modeling 
and control studies.

Over the past decade, several model integration 
initiatives have been launched that aim to create 
reliable biological and physiological models, 
including projects like E-cell, Virtual Cell, the 
Virtual Physiological Human, and the Physiome 
Projects. These projects attempt to formulate 
a comprehensive framework for modeling the 
human body using computational methods to 
provide answers to basic questions, and better 
care for human beings. The collaborative research 
initiatives consist of scientifically independent 
projects on integrative systems physiology and 

biology undertaken by individual laboratories 
mainly in Western countries. Financial support is 
provided mainly from national and international 
health research agencies.

The main scope of those projects is to gather 
interdisciplinary modeling work, information pro-
cessing methodologies and relevant software tools, 
data banks, etc., and make them approachable to 
research groups across the globe. However, most of 
the projects have just begun and have not achieved 
great depth yet, for many theoretical and techno-
logical issues have to be addressed. The challenge 
for the projects is to link these two developments 
for an individual – to use complementary data 
together with computational modeling tailored 
to the anatomy, physiology and genetics of that 
individual, for diagnosis or treatment.

The Physiome Project represents current quan-
titative attempts in this direction that establish 
top-down paths to meet up with the sub-cellular 
information and, so, introduce models traveling 
the whole way from genes to health. Its concept 
was first presented in a report from the Com-
mission on Bioengineering in Physiology to the 
International Union of Physiological Sciences 
(IUPS) Council at the 32nd World Congress in 
Glasgow, in 1993. The name of the project comes 
from “physio-” (φύσις- life) and “-ome” (as a 
whole), and is intended to provide a “quantita-
tive description of physiological dynamics and 
functional behaviour of the intact organism”. A 
synthesium on the Physiome Project was held at 
the 34th World Congress of IUPS in Christchurch, 
New Zealand, in August 2001, and the Physiome 
Project was designated as a major focus for IUPS 
for the subsequent decades. The main projects of 
the Physiome include models of the brain and the 
central nervous system, the cardiovascular, the 
respiratory, the urinary, the musculo-skeletal, the 
alimentary, the reproductive, the endocrine, the 
haemolymphoid, and the integumental systems. 
To illustrate the international collaboration, more 
than 16 research laboratories from five countries 
(Australia, USA, United Kingdom, Israel, and 
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Switzerland) are currently working only on 
cardio-models.

Virtual Physiological Human is a European 
Union initiative which started in 2007. Its main 
targets are the creation of several patient-specific 
computer models that will be used for personalized 
and predictive healthcare; as well as, the creation 
of ICT-based tools for modeling and simulation of 
human physiology and disease-related processes. 
The Physiome and the Virtual Physiological Hu-
man projects seek to understand and describe the 
human organism, its physiology and pathophysi-
ology, and to use this understanding to improve 
human health. While it will be a very long time 
before a surgery will be executed or a drug’s ef-
fects will be tested on a virtual patient, that day 
is closer than ever. But we need to recognize the 
potential of such international efforts. The most 
daunting challenge for the future remains the inte-
gration of this incredible wealth of information to 
increase our awareness of how biological systems 
are structured at all levels, and how this structure 
drives the function of a healthy or diseased entity.

17.5. LEVELS OF MODELING: 
FROM CELLULAR TO ORGAN 
AND SYSTEMS MODELING

The breadth and depth of the experimental data 
currently obtained across laboratories all over the 
world has allowed the design of sub-cellular to 
whole organ models. For the reasons discussed 
in Section 17.4.2, a rapid expansion of detailed 
experimental data, mainly occurred in the last 
decade of the previous millennium, had created the 
area to develop the “theoretical biology” (Noble, 
2002). The term “Systems Biology” represents a 
novel, quantitative approach to biological research 
that encompasses physiological functioning as 
well. Biology and physiology are merged together 
using a combination of experimental data and a 
quantitative theoretical description of the interac-
tions between system components across multiple 

spatial and temporal scales. Modeling at the sub-
cellular level has advanced to an impressive level 
in most biological tissues, partially guided by 
direct knowledge transfer from cardiac to other 
cell models (Youm et al., 2006).

Models are formulated in the cellular, intercel-
lular, tissue, organ, and organism levels. At the 
organ and organism level, complexity of computa-
tional (and experimental) models increases rapidly. 
In order to handle this problem, the multitude 
of interacting processes and components must 
be assessed for inclusion into, or elimination 
from, mathematical representation of biological 
behavior. Different researchers have taken differ-
ent approaches, but applied (i.e., experimentally 
testable) work seems to follow the pattern that, 
once the research question has been determined 
experimentally, the mathematical models are 
developed to maximally reproduce relevant be-
havior with minimal complexity. This process of 
selection and reduction is, of course, difficult and 
usually requires a continuous iteration between 
experimental and theoretical model application. 
In order to formulate a model description, two 
main pathways exist. The first pathway leads to 
a mathematical model via a physical description 
of the system. The second pathway is based on 
the system identification using observations. 
These pathways will be further discussed in the 
next Section.

Starting from the sub-cellular and cellular lev-
els, Hodgkin & Huxley introduced the “paradigm” 
physiological model of nerve excitation (Hodgkin 
& Huxley, 1952). Eight years later, Denis Noble 
presented the first cardiac cell model (Noble, 
1960). These two works were the cornerstones 
for the development of the current, computational 
approach to modeling of living cells. As we ascend 
the spatial biological ladder, we need to integrate 
the cell functioning to a more complicated level of 
structure that resembles that of a tissue. Numerous 
mathematical and computational descriptions of 
cellular and inter-cellular effects use the work of 
Beeler & Reuter (1977) for models of the electrical 
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activity propagation in the intracellular and extra-
cellular spaces. At the organ and organism level, 
complexity of computational (and experimental) 
models increases rapidly, and scientists usually 
simplify their models in order to gain insight into 
the underlying physiological system that is be-
ing examined. The work from researchers at the 
University of California, San Diego, CA, USA 
is a good example of how advanced the field of 
system modeling has become in this regard. Bigg 
is a freely available model of the first complete 
computer model of human metabolism that helps 
researchers uncover new drug pathways, and un-
derstand the molecular basis of cancer and other 
diseases (Schellenberger et al., 2010).

17.6. CLASSIFICATION OF MODELS

We can now begin to get to the heart of the matter, 
by describing and classifying models. This section 
will deal with models of physiological systems 
and their behavior; either dynamic or static. A 

dynamic model is characterized by a number of 
variables whose values change with time, even 
in the absence of external inputs. These variables 
fully describe the systemic behavior at any given 
time and are known as state variables. On the 
other hand, a static model has direct instanta-
neous links between all variables. A very broad 
categorization, which is nonetheless quite useful 
for creating more finely structured hypotheses, 
considers randomness, a priori knowledge of the 
model’s structure and the domain of description. A 
major target in modeling a physiological system 
is to identify these properties through the use of 
appropriate computational tools.

17.6.1. Deterministic and Stochastic 
Models

In a deterministic system, we always have an ex-
act relationship between measurable and derived 
variables. Given a clear knowledge of the initial 
conditions and the system dynamics, the future 
behavior of a deterministic system has no uncer-

Figure 3. Classification of models



756

Physiological Systems Modeling, Simulation, and Control

tainty for all time. Most physiological systems 
are studied as deterministic and the unavoidable 
uncertainty is introduced into the model as a 
separate random process superimposed into the 
variables of the system. What makes a determin-
istic system so desirable is that, given sufficient 
knowledge about the dynamics and the values of 
the state variables at a given time (the state of the 
system at that time), the future course of the system 
can be predicted with some degree of accuracy.

On the other hand, the outcome of a stochastic 
model is governed by some degree of chance. 
Even if complete information on the dynamics 
and the initial states of such a model is given, 
the future course of the system is impossible to 
be fully predicted. Rather, the model’s output can 
be described in terms of its statistics; that is, the 
likelihood of its state variable having particular 
values. A basic modeling question in many ex-
perimental situations is whether the system used 
to provide the acquired data is to be modeled 
as deterministic or stochastic. In practice, the 
acquired data set is the result of a mix of deter-
ministic and stochastic processes. In fact, such a 
concern is further complicated; we can always 
construct a deterministic system that will generate 
the specific data of any given finite data set, even 
if our data set is acquired from a highly stochastic 
process. A golden rule for these kinds of situations 
is this: We always seek to model a process with 
the maximum possible simplicity.

17.6.2. Parametric and 
Nonparametric Models

For a better description and analysis of any sys-
tem, we need to introduce the subtle distinction 
between variables and parameters. A parameter is 
a constant; it is a term in an equation that is fixed. 
On the contrary, a variable changes with time to 
reflect the dynamics of the system.

A parametric model is a bottoms-up representa-
tion of a process based on physical principles and 
a-priori knowledge of constitutive laws governing 

the sub-processes. These laws, together with physi-
cal constraints, are used to integrate the models of 
subsystems into an overall mathematical model of 
the system. If one has valid representations from 
basic science, then equations can be postulated to 
represent the system under study in either continu-
ous time or discrete time (events). In which case, 
the variables are related by equations containing 
parameters which define system behavior. In the 
case of static systems, the relations are simple 
algebraic equations independent of time. For dy-
namic systems (linear or non-linear), the equations 
include functions of time and require knowledge 
of past values for variables. In addition, the system 
under study may have lumped variables, or require 
distributed parameters over a domain of interest 
(e.g., temperature in space). The latter is usually 
described with partial differential (or difference) 
equations or finite elements.

A nonparametric model provides a method 
to estimate a system’s output representing the 
actual relationship between the input and the 
output, without making restrictive assumptions 
about the variables of the system or its statistic 
properties. Such models can provide accurate 
methods of data analysis, because they make 
minimal assumptions about the data-generating 
process. In the nonparametric black box approach, 
a mathematical model is formulated on the basis 
of the input output characteristic of the system 
without consideration of the internal function-
ing of the system. Linear nonparametric models 
consist of data tables representing the impulse 
response, step response, and frequency response 
of the system. Because nonparametric models 
are not represented by a compact mathematical 
formula with adjustable parameters, such models 
do not impose a specific mathematical structure 
on the system.

Now a question arises on the selection criteria 
between those two types of models. The modeling 
choice depends mainly on the nature of the system, 
on the type of behavior that is expected, and on the 
intended use of the model. Nonparametric models 



757

Physiological Systems Modeling, Simulation, and Control

serve well as preliminary models that are used 
to analyze system characteristics. For example, 
estimating the transient response provides insight 
into the rise time and settling time of the system 
response. Similarly, estimating frequency response 
might indicate the order of the system, locations 
of resonances and notches, crossover frequencies, 
and the bandwidth of the system. In some cases, a 
specific mathematical form is preferable because 
the estimated parameters have a physical inter-
pretation. However, when estimates of dynamic 
characteristics are only required, nonparametric 
models are usually used.

17.6.3. Applied Examples

Example 17.1: A simple example of a dynamic 
system is that of a bicycle ride. The state 
variables of the model include the bicycle’s 
speed and the feet pressure on the pedals. 
The variables are related in a direct but 
potentially complicated manner. A simple 
model would just consider speed to be pro-
portional to pedal pressure. A more realistic 
model would include time delays resulting 
from the chain dynamics and neural lag. 

An even more extensive model would also 
include chain dynamics explicitly, as well 
as air pressure against the running bicycle. 
Knowing which variables are important to 
include in the model is one of the keys to 
successful modeling, and this is, in many 
cases, more an art than a science.

Example 17.2: Another example, aimed to distin-
guish between parameters and state variables 
is given below. In the case of modeling the 
heart rhythm during a specific short-term 
physical activity, the subject should not eat 
during the exercise, and the exercise should 
take place in a limited amount of time so 
that circadian fluctuations do not have a 
significant effect on the experiment. Hence, 
food and the time of the day are considered 
as fixed parameters (i.e., they are constant). 
On the contrary, if we want to model the heart 
rhythm over the day, then the time of day 
and food absorption become state variables.

Example 17.3: Any signal that is recorded from 
the brain, either inside (e.g., local field 
potentials - LFP) or outside of the scalp 
(e.g., electroencephalograph - EEG)), is 
a highly stochastic signal. The LFP is an 

Figure 4. A local field potential (LFP) recorded inside the subthalamic nucleus of a Parkinson’s disease 
patient. The signal is highly stochastic since it is produced by a stochastic system. The LFPs are domi-
nated by the more sustained currents in the tissue, typical of the somato-dendritic currents.
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electrophysiological signal, dominated by 
slow varying potentials, typical of a neuron’s 
somato-dendritic processes within a volume 
of tissue. The electrical potential is usually 
recorded with a very small electrode embed-
ded within neuronal tissue, typically in the 
brain of an anesthetized animal or patient 
(in vivo) or within a thin slice of brain tissue 
maintained in a solution (in vitro). A typical 
LFP signal, acquired from the subthalamic 
nucleus of a Parkinson’s disease patient, is 
shown in Figure 4.

17.7. COMPARTMENTAL MODELING

Compartmental modeling is mainly used to 
describe systems that include transfer of solutes 
across compartments, such as the respiratory and 
circulatory systems. It is based on metabolism 
of tracer-labeled compound studies that started 
in the 1920s. Compartmental models are linear, 
nonlinear, continuous or discrete models of sys-
tems that are divided into homogenous well-mixed 
components, called compartments. A compartment 
is a well-delineated biotic or abiotic entity. The 
models may have constant or even time-varying 
parameters. The internal behavior of the system 
is characterized by the movement of materials 
between two neighboring compartments. Two 
of the main difficulties of compartment model-
ing are the determination of the exact number of 
compartments to be used in the model, and the 
accessibility of some of the compartment’s data. 
Lumped compartmental variables are mainly sub-
stances (solutes) that are either exogenous (e.g., 
a drug) or endogenous (e.g., insulin). Blood and 
chemical species (such as hormones) distribution 
to various organs, cellular dynamics, tempera-
ture distribution, etc. are just few examples in 
which compartmental models are used in studies 
involving pharmacokinetics, chemical reaction 
engineering, fluid transport etc.

Compartmental modeling is also a significant 
approach of modeling neural systems. Various 
platforms have been developed to provide the 
tools for a detailed realistic simulation of a real 
neuron, or even a large network of neurons based 
on a “building block” approach. In such systems, 
simulations are constructed from modules that 
receive inputs, perform calculations on them, and 
then generate outputs. GEneral NEural SImula-
tion System (GENESIS) is a general purpose 
object-oriented software platform developed by 
James Bower and David Beeman (Bower & Bee-
man, 1998) to support the biologically realistic 
simulation of neural systems. This object-oriented 
environment enables the modification of existing 
simulations for new purposes. GENESIS, and 
its version for parallel and networked computers 
(PGENESIS), was the first broad scale modeling 
system in computational biology to encourage 
modelers to develop and share model features and 
components. It supports the simulation of neural 
systems, ranging from subcellular components 
and biochemical reactions to complex models of 
single neurons, simulations of large networks, 
and systems-level models.

An alternative to the GENESIS simulation 
environment is NEURON (http://www.neuron.
yale.edu), which is widely used by experimental 
and theoretical neuroscientists. It was primarily 
developed by Michael Hines, John W. Moore, and 
Ted Carnevale at Yale University, New Haven, 
CT, USA and Duke University, Durham, NC, 
USA (Hines & Carnevale, 1997). Both platforms 
implement a built in “scalability” in models. This 
is a major advantage compared to other custom 
made codes needed to be written for a specific 
simulation (e.g., in a MATLAB & Simulink en-
vironment), but it comes with the expense of a 
need to invest the time required to understand the 
analysis and graphic tools provided by platforms 
such as GENESIS and NEURON.
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17.7.1. Detailed 
Compartmental Models

In order to describe the transfer of a solute by dif-
fusion between two compartments, the following 
assumptions are needed:

1. 	 All compartments have constant volumes.
2. 	 The solutes, upon entering a compartment, 

are dispersed homogenously in the entire 
compartment.

3. 	 The rate of solute depletion from a compart-
ment is analogous to the concentration of the 
solute in the same compartment.

If the aforementioned assumptions are met, 
the time course of a solute transfer across two 
compartments can be examined. Using a law of 
diffusion derived by Adolph Fick in the year 1855, 
we can model the diffusion coefficient, D of a 
solute, transferred between two compartments, 
that has quantity, q, and concentration, c, using 
a membrane with surface area, A, and thickness 
dx, as follows,

dq
dt

DA
dc
dx

= − 	 (17.1)

The transfer rate, R, of the diffusion is defined as

R
DA
dx

= 	 (17.2)

For a thorough review and an analytical ap-
proach of two-compartment models, please see 
(Enderle, 2005). The simplification of compart-
ment models is allowed by the fact that the dis-
tribution inside a compartment is not included. 
The basic assumption of a solute homogeneously 
mixed inside a compartment, results in knowing 
everything about a system’s behavior, when the 
inflow and outflow for each compartment are 
identified.

17.7.2. Modified 
Compartmental Models

The compartment analysis presented in Section 
17.7.1 is not adequate to fully describe systems 
in which the transfer rates are not constant, but 
depend, for example, on the concentration of a 
solute in a single compartment. But even in those 
systems, we can apply a modified compartment 
analysis to cope with the nonlinearities present. 
As the model becomes more and more complex, 
an analytical solution is not feasible; yet, simula-
tions of such models can give us an approximation 
of the solution.

One of the earliest modeling attempts that 
aimed at analyzing smallpox morbidity and mor-
tality dates back to 1766 when the Dutch-Switch 
mathematician, Daniel Bernoulli, tried to analyze 
it as a statistical problem to demonstrate the ef-
ficacy of vaccination. The next infectious disease 
modeling attempt belongs to Hammer and Soper 
who created a model of measles spreading, in 
1906. Their model contained separate compart-
ments for susceptibles, infectives, and recovered, 
taking into consideration the births, the infection 
rate, etc. Twenty years later, Kermack and McK-
endrick (in the continuous time), and Reed and 
Frost (in the discrete time) presented extensions 
for the model of Hammer and Soper.

For both the Kermack-McKendrick and Reed-
Frost models, any given person is related to a 
certain time period. The latent period is the time 
elapsed between contact and the actual discharge 
of the infectious agent. The infectious period is 
the time during which the contagious agent is 
spread to others. The immune period is the time 
during which a person has temporal or permanent 
immunity and can no longer transmit the agent. 
The incubation period is the time elapsed between 
contact and the observation of symptoms. The 
symptomatic period is the time interval in which 
the person overtly displays signs of the illness; see 
(Enderle, 2005) for an illustration of these periods.
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If we consider a population of size, n, with x 
susceptibles, y infectives, and z immunes, so that 
n = S + C + R, the assumptions for a Kermack-
McKendrick continuous time modeling approach 
are the existence of: i) a uniform mixing among 
the population, ii) a zero latent period, iii) a closed 
and isolated population, iv) a negative exponen-
tial distribution for the infectious period, v) an 
infectious rate, b, and vi) a removal rate, g. The 
course of an infectious epidemic in a closed and 
isolated population is a function of the number 
of susceptibles and the infectious rate between 
susceptibles and infectives. In Figure 5 (upper 
panel), the Kermack-McKendrick model is shown. 
Arrows indicate a nonnegative transfer of indi-
viduals from one state to another, dependent on 
the infective rate b (infectives) and the removal 
rate g. The Kermack-McKendrick model describes 
the transfer of S susceptibles, C infectives, and R 
immunes at time t from state to state. With b as 
the infective rate, the differential equations that 
describe the model are:

dS
dt

bSC

dC
dt

bSC gC

dR
dt

gC

= −

= −

=

	 (17.3)

Equation 17.3 can be solved analytically using 
a Taylor series expansion; see (Enderle, 2005).

The Reed-Frost model is a deterministic dis-
crete time model; this makes it more practical in 
being used with true data which is usually sampled 
versions of continuous data. The assumptions for 
a Reed-Frost discrete time modeling approach 
are as follows: i) the existence of a uniform 
mixing among the population; ii) the existence 
of a zero latent period (although the model can 
extend easily to a nonzero latent period having a 
well defined distribution); iii) the existence of a 
closed population at steady state; iv) susceptible 
individuals can develop the infection only once 

and then become permanently immune; v) since 
the person can be infected at any instant during the 
time period, the average latent period is one-half 
of the time period, where the length of the time 
period represents the period of infectivity; and, vi) 
each individual has a fixed probability of coming 
into adequate contact p with any other specified 
individual within one time period.

The structure of the Reed-Frost model is shown 
in Figure 5 (bottom panel). Note that the prob-
ability of adequate contact p can be thought of as

p
n
N

= 	 (17.4)

where, n  is the average number of adequate 
contacts.

As before, the Reed-Frost model describes 
the transfer of S susceptibles, C infectives, and R 
immunes, but now the transfer is measured with 
respect to the next discrete time (state), k+1. After 
adequate contact with an infective in a given time 
period, a susceptible will develop the infection and 
be infectious to others only during the subsequent 
time period, after which one becomes immune. 
If the infective rate is (1 - qC(k)), the model can be 
described by the nonlinear difference equations

C k S k q

S k S k C k

R k R k C k

C k( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )+ = −
+ = − +
+ = +

1 1

1 1

1

	 (17.5)

The time period T is understood to be the 
length of time an individual is infectious, so that 
the removal rate is equal to one.

17.7.3. Expansion to Multi-
Compartmental Models

It should be clear by now that real biological 
models incorporate more than the limited number 
of compartments already described in previous 
sections. A single compartment model can be 
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divided to multiple compartments if we choose 
to include more details on it such as cell volume, 
interstitial volume, or plasma volume. But even 
these volumes can be further compartmental-
ized. For instance, the interstitial volume can 
be defined with compartments including the GI 
tract, mouth, liver, kidneys, and other unidentified 
compartments. Each of these compartments has its 
own transfer rate for moving the solute from one 
compartment to another. In general, concern about 
how the solute moves from and into a compart-
ment is not a focus, but only the amount of solute 
that is transferred. The concepts described in the 
previous section can be applied to a model with 
any number of compartments. Each compartment 
is characterized by a conservation of mass differ-
ential equation that describes the rate of change 
of solute. Thus, for the case of N compartments, 
there are N equations of the general form

dq

dt
Input Outputi = − 	 (17.6)

where, qi is the quantity of solute in compartment i. 
For a linear system, the transfer rates are constants.

Physiologically based pharmacokinetic 
(PBPK) modeling is a multi-compartmental 
modeling technique used in pharmaceutical re-
search and drug development, and in health risk 
assessment for cosmetics or general chemicals. 
Compartments correspond to a-priori defined 

organs or tissues, and their interconnections cor-
respond to blood or lymph flows. This modeling 
approach aims to balance between complexity 
and simplicity to predict the absorption, dis-
tribution, metabolism and excretion (ADME) 
of synthetic or natural chemical substances in 
humans and animal models. PBPK models may 
have purely predictive uses, but other uses, such 
as statistical inference, have been made possible 
by the development of various statistical tools. A 
system of differential equations for concentration 
or quantity of substance on each compartment is 
usually written, and its parameters represent blood 
flows, pulmonary ventilation rate, organ volumes, 
etc. PBPK models are also used for inter-species 
transpositions or extrapolation from one mode of 
administration to another (e.g., males to females, 
adults to infants, inhalation to oral) to asses toxicity 
risk and therapeutic drug development.

17.7.4. Applied Example

Example 17.4: Let us consider a two compart-
ment model, shown in Figure 6, in analogy to the 
one presented by Goodman and Noble (1968). 
According to that model, the rate of cholesterol 
turnover has been described as conforming to a 
two-compartmental system consisting of one pool 
that turns over rapidly and a second pool with a low 
turnover rate. Cholesterol is inserted into the blood 
plasma of all animals by two sources, namely the 

Figure 5. Modified compartmental models. The Kermack-McKendrick (upper panel) and the Reed-Frost 
(bottom panel) models are shown.
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food and synthesis from simpler substances within 
the body. Cholesterol is recycled. It is excreted by 
the liver via the bile into the digestive tract. This 
system can be described using a two-compartment 
model, where some of the tissue (primarily the 
liver, which is the main organ playing a role in 
the dynamics of the cholesterol levels) and the 
blood exchange cholesterol with the blood. We 
assume that the exchange of cholesterol between 
the liver and the blood is happening in a high, 
almost instantaneous speed; that is why we model 
the blood-liver system as a single compartment. 
The rest of the exchange – between blood and 
liver and the rest of the tissues, lumped together 
in a second compartment – is happening at a 
much slower speed. Hence, the first compart-
ment represents the amount of cholesterol in the 
blood and liver, and the second represents the 
amount of cholesterol in all the rest of the body. 
If we inject a small amount of C14 into the blood 
stream, we can estimate the amount of radioactive 
cholesterol in the two compartments, Q1 and Q2 
respectively. We assume that the concentration of 
radioactive cholesterol-C14 in the first compart-
ment is C1(t)=Q1(t)/G1, and the concentration of 
radioactive cholesterol in the second compartment 
is C2(t)=Q2(t)/G2. Let us first consider the blood-

liver compartment. The cholesterol that is inserted 
via food and from biosynthesis is not radioactive. 
Hence, the only inflow of cholesterol-C14 into 
the first compartment arrives from the second 
compartment. Now, let us consider the second 
compartment. The total inflow of cholesterol into 
the second compartment is R2+R3 and the amount of 
the cholesterol-C14 is C2(t)=Q2(t)/G2. This means 
that the amount of cholesterol-C14 that flows into 
the first compartment is (R2+R3)Q2(t)/G2, and the 
amount of cholesterol-C14 that flows out of the 
first compartment and into the second compart-
ment is R3Q1(t)/G1. The amount of cholesterol-C14 
that is extracted to the environment is given by 
(R0+R1+R2)Q1(t)/G1. From these relations, we can 
write down the differential equations that govern 
the system as follows,
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R R
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Q t

R R R R
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(17.7)

Figure 6. Compartmental model of cholesterol concentration in the body
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17.8. LINEAR MODELING OF 
PHYSIOLOGICAL SYSTEMS

Linear systems are highly popular among the 
physiological models since they are simple to 
implement and provide extremely powerful tools 
for their analysis. In contrast, methods available 
for the study of nonlinear systems are much more 
limited. In fact, almost all physiological systems 
are nonlinear; however, many of these systems 
can be modeled as linear systems in a limited 
range of operation.

Let us introduce a short description of the 
terminology in the field. If the operation that 
transforms the input into the output varies with 
time, the system is time varying; whereas, if the 
operation remains constant, the system is time 
invariant. Two attributes of linear time-invariant 
(LTI) systems form the basis for almost all analyti-
cal techniques applied to these systems:

1. 	 Response obeys the principle of superposition.
2. 	 Response can be expressed as the convo-

lution of the input with the unit impulse 
response of the system.

The concepts of superposition, convolution, 
and impulse response will now be defined shortly. 
The principle of superposition states that if the 
system has an input that can be expressed as a 
sum of signals, then the response of the system 
can be expressed as the same sum of the individual 
responses to the respective signals. Superposition 
can be expressed mathematically as follows:

f a x a x a f x a f x( ) ( ) ( )
1 1 2 2 1 1 2 2
+ = + 	 (17.8)

where, x1 and x2 are two inputs, f(x1), f(x2) are 
the respective outputs of a system, fand a1, a2 are 
two scalars. Superposition applies if and only if 
a system is linear. The effects of performing any 
linear operation on the input of a linear system 
(e.g., integration, differentiation, Fourier transfor-

mation, etc.) will affect a change on the output 
in exactly the same way as if the transformation 
were applied to it directly. That is, if f and g are 
two linear operators, then f(g(x))=g(f(x)).Thus, for 
example, the response of a linear system to a step 
input can be computed by integrating its impulse 
response, since a step is the integral of an impulse.

Under the same test conditions, a system that 
is time-invariant will respond identically to a 
specific stimulus irrespective of when it is intro-
duced. That is, except for the time shifts between 
responses, all responses are identical. Just as not 
all systems are linear, not all linear systems are 
time-invariant. Mathematically, time invariance 
can be expressed as follows:

y t f x t y t f x t( ) ( ( )) ( ) ( ( ))= ⇒ − = −t t 	
(17.9)

where, τ is a time constant. A system that satisfies 
both of these properties is naturally called a linear 
time-invariant (LTI) system.

Testing a system for linearity may be done 
using the principle of superposition. An easy way 
to implement such tests is to apply the same input 
at different amplitudes. If the system is linear, the 
output will have the same shape and the output 
amplitude will scale with the input amplitude. 
It is also useful to remember that the response 
of a linear system to a sinusoidal input will be a 
sinusoid at the same frequency. Thus, if the output 
has components at frequencies not in the input, it 
must be nonlinear.

Many systems behave linearly over a restricted 
range of inputs. For example, a rectifier is linear 
as long as the input remains either positive or 
negative. Almost any system will become non-
linear if the input is large enough. Conversely, 
most nonlinear systems can be described by a 
linear approximation if the input amplitude is 
small enough. Thus, it is important to determine 
not only whether a system is linear, but over what 
range of values does it behave linearly. Thus, it is 
important to determine the linear range of a system. 
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In some cases, a system may have more than one 
linear range and display different behaviors in 
each range (e.g., a full wave rectifier). Note that 
the linear range is a property of the amplitude of 
the input – not its frequency content. That being 
said, the linear range may vary with frequency 
for some types of nonlinear systems.

An approach that is frequently useful in dealing 
with nonlinear systems is to transform either the 
input or the output in order to make the resulting 
input-output relation more linear. For example, 
logarithmic transformations are useful in linear-
izing systems in which there is a power relation 
between input and output.

17.8.1. Time-Domain and 
Frequency-Domain Models

If a system is known to be linear, it is always 
guaranteed that an adequate model of the system 
can be determined. This consists of determining 
the system’s response to a set of basis functions 
(for example impulses or sinusoids of different 
frequencies). Once these responses are known, the 
response to an arbitrary input may be determined 
as follows:

1. 	 Decompose the arbitrary input into a linear 
combination of basis functions (e.g., Fourier 
analysis decomposes the signal into a linear 
combination of sinusoids).

2. 	 Determine the response to each component 
using the principle of proportionality.

3. 	 Sum the resulting components to determine 
the overall response by relying on the prin-
ciple of superposition.

If the basis functions are a series of impulses, 
then the analysis results in time domain models. 
On the other hand, if the basis functions are 
sinusoids, then the analysis results in frequency 
domain models.

One way to characterize the dynamic behavior 
of a linear system is in terms of its response to 
an impulse. The impulse response function (IRF) 
can be used as a representation of a linear system 
because it can be used to predict the response of 
the system to any input. To visualize how this 
works, consider the input to the system to be a 
series of impulses of different amplitudes. The 
response of the system to any one impulse is 
simply the IRF multiplied by the amplitude of the 
input impulse, and delayed by the time at which 
the input impulse occurs. Now, because a linear 
system obeys the superposition principle, the 
overall output is simply the sum of the responses 
to all the input impulses. The convolution integral 
is the mathematical statement of this procedure.

A system’s IRF can have both positive time 
values, representing system memory, and negative 
time values, representing system anticipation. The 
response, y(t), of such a two-sided IRF, h(t), to an 
input, x(t), is given by the convolution integral

y t h x t d( ) ( ) ( )= −
−∞

∞

∫ t t t 	 (17.10)

If, as is usually the case, h d2( )t t <∞
−∞

∞

∫ , 

then the system has finite memory and h t( ) @ 0  
when t <T

1
 and t >T

2
for some value of T1 

and T2. Under these conditions, Equation 17.10 
may be simplified to

y t h x t d
T

T

( ) ( ) ( )= −∫ t t t
1

2 	 (17.11)

In causal (physically realizable or non-antici-
patory) systems there is no anticipatory component 
to the response; e.g., h(𝜏)=0 for τ<0 so that T1=0. 
The IRF is then one-sided and the convolution 
integral further simplifies to

y t h x t d
T

( ) ( ) ( )= −∫ t t t
0

2 	 (17.12)
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A linear system can be represented by either a 
parametric or non-parametric IRF. A parametric 
IRF is in the form of an equation. The structure 
of the equation defines the class of systems it 
represents, and the parameters of the equation 
determine how the behavior differs from that of 
the other members of the same class. In contrast, a 
non-parametric IRF consists of the sampled values 
of the response, and is stored as a real vector in 
the time domain. In short, the parametric form 
can be represented by an equation, and the non-
parametric form can be represented by a curve.

It is normally assumed that physical systems 
are causal and do not anticipate. Consequently, 
the usual IRF identification procedures employed 
in engineering determine only the positive or 
memory part of the IRF. There are a number of 
areas of research, particularly those involving the 
life sciences, where it is important to determine 
both the positive and negative parts of an IRF. 
Two-sided IRFs will be important in situations 
involving actual prediction. Living systems 
frequently demonstrate predictive behavior. For 
example, the frequency response of the visual 
pursuit system is wider for predictable stimuli 
than for random stimuli. Effective prediction can 
occur when the input is unknown but structured 
(e.g., periodic), or when preview of the input is 
possible. Under such conditions, a negative por-
tion of the IRF may well occur. A pure delay of 
𝜏, either preceding or following a linear dynamic 
system, moves the IRF 𝜏 to the right. Thus, whether 
or not a system contains a pure delay may often 
be determined from the IRF. If the input to the 
system is measured after a delay of 𝜏, then the IRF 
is shifted to the left with the result that negative 
time values may occur, necessitating the use of 
two-sided IRF identification techniques. Once 
the delay has been determined from the identified 
IRF, the input can simply be shifted with respect to 
the output to eliminate the delay. There are many 
situations where the input to a system is related to 
its output by feedback. Attempting to identify the 
system under such conditions can lead to incorrect 

estimates of the system’s dynamics. However, the 
presence of a feedback relation can be detected 
as an anticipatory component of the IRF, relating 
the input to the output. Hence, computing the 
two-sided IRF provides a means of testing for a 
feedback relation between two signals.

Now, we will deal with an alternative approach 
in which linear dynamics are characterized in terms 
of the response to sinusoidal stimuli of different 
frequencies. The response of a linear system to 
a sinusoidal stimulus will be a sinusoid of the 
same frequency but of different amplitude and 
phase. The frequency response of a linear system 
describes the relative magnitudes of the input and 
output sinusoids (gain), and the phase difference 
as a function of frequency.

The frequency response of a linear system may 
be used to determine the response of the system 
to an arbitrary input as follows:

1. 	 Decompose the input signal into a sum of 
sinusoids using Fourier analysis.

2. 	 Multiply each sinusoid by the gain of the 
system at the appropriate frequency, and 
shift it by the corresponding phase.

3. 	 Sum the scaled and phase-shifted sinusoids 
to reconstruct the overall response.

The response of a linear system to an arbitrary 
input may be computed from its impulse response 
using the convolution integral defined in Equa-
tion 17.10. The Laplace transform of this relation 
gives Y(s)=H(s)X(s); where, H(s) is the Laplace 
transform of the impulse response, Y(s), X(s) are 
the Laplace transforms of the output and the input, 
respectively, and s is a complex variable defined as 
s = σ + jω, σ being a damping factor and ωbeing 
a frequency term. The transfer function of the 
system can then be written as

H s
Y s
X s

( )
( )
( )

= 	 (17.13)
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The transfer function of any linear, time-in-
variant, constant-parameter system without delays 
may be written as the ratio of two polynomials:

H s K
s z s z

s p s p
m

m

( )
( )...( )

( )...( )
=

− −

− −
1

1

	 (17.14)

where, the zeros (zi) and poles (pi) of the polyno-
mials may be real, zero, or complex (if complex 
they come as conjugate pairs). To determine the 
frequency response of a system with transfer func-
tion H(s), apply a sine wave stimulus:

x t A t( ) sin( )= w 	 (17.15)

which has the Laplace transform X s
s

( )=
+

Α
w
w2 2

. 

The response in the Laplace domain will be

Y s AK
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(17.16)

Expanding the right hand side of Equation 
(17.16) using partial fractions gives

Y s
c

s j

c

s j

c

s p

c

s p
( ) ...=

+
+
−

+
−

+
−
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1

4

2
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(17.17)

Taking the inverse transform gives the solution

y t c e c e c e c ej t j t p t p t( ) ...= + + + +−
1 2 3 4

1 2w w 	
(17.18)

All pi, i=1,…,n must be less than zero for the 
system to be stable, so the steady state response is

y t c e c e
ss

j t j t( )= +−
1 2

w w 	 (17.19)

Standard partial fraction techniques then give

c
AH j

c
AH j

1 22 2
=

−
=

( )
,

( )w w 	 (17.20)

so that

y (t) A H j t H j
ss
= +( )( ) cos ( )ω ω φ ω 	

(17.21)

where, |H(j𝜔)| denotes the magnitude of H(j𝜔), 
and φ ωH j( )  is its phase.

Thus, the steady state sinusoidal response of 
a linear system can be operationally determined 
from its transfer function by letting s=j𝜔, and then 
evaluating the magnitude and phase of the result-
ing complex number as a function of frequency. 
Conversely, the frequency response of a system 
can often be used to determine the underlying 
transfer function.

Sinusoidal inputs provide a convenient, 
straightforward means of determining the fre-
quency response of a system. The procedure is 
as follows:

1. 	 Apply a sinusoidal stimulus at frequency 
ω to the system, wait for the response to 
reach steady state, and record the resulting 
sinusoidal response.

2. 	 Compute the ratio of the response amplitude 
to the input amplitude, and use it as a measure 
of the system gain at frequency ω.

3. 	 Compute the phase shift of the output with 
respect to the input, and use it as a measure 
of the system phase shift at ω.

4. 	 Repeat steps i-iii at frequencies over the 
range for which the system responds.

5. 	 Draw or fit a smooth curve through the 
resulting points.

Advantages of sinusoidal testing include:

1. 	 The gain of the recording system can be 
adjusted at each frequency (either manually 
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or automatically) to use the full dynamic 
range and minimize the effects of noise.

2. 	 The amplitudes of the input sinusoids can be 
adjusted until the output amplitude reaches 
some desired value.

3. 	 In the presence of noise and nonlinearities, 
only the amplitude and phase of the sinusoi-
dal component at the input frequency need 
be measured.

Sinusoidal testing is very effective, when 
practical, but does have a number of limitations:

1. 	 The approach requires the application of pure 
sinusoids of a single frequency. This is often 
difficult technically. Furthermore, in the life 
sciences, particularly in behavioral studies, 
it is often desirable to avoid predictable, 
periodic stimuli.

2. 	 The procedure is time consuming. Each 
stimulus frequency must be applied sepa-
rately and the response recorded only after 
the transient response has decayed. If the 
system’s time constant is long, this may 
require many cycles at each frequency. 
The time taken to do sinusoidal testing is 
particularly important in the study of physi-
ological systems where experimental time is 
always limited. In addition, living systems 
are frequently time varying so it is important 
to obtain an identification in as short a time 
as possible.

3. 	 Only a limited number of frequencies can 
be tested. If too few frequencies are tested, 
sharp changes in the frequency response, 
e.g. resonances, may be missed.

17.8.2. Stochastic Testing

Consider a constant parameter, linear system de-
scribed by the one-sided, impulse response h(𝜏) 
with the corresponding frequency response func-
tion H(j𝜔). Assume that the system is subjected to 

a stationary, random input x(t) which generates the 
stationary random process y(t) as output. Then,

y t h x t d
t

( ) ( ) ( )= −∫ t t t
0

	 (17.22)

The autocorrelation function of the output is 
given by

R y t y t
yy
( ) ( ) ( )t t= −



Ε 	 (17.23)

which has the expected value

h v h R t v dvd
xx

tt

( ) ( ) ( )m m m− +∫∫ 00
	

(17.24)

where, Rxx is the autocorrelation of the input. Thus, 
the output autocorrelation function is defined by 
the system’s impulse response and the autocorrela-
tion function of the input. The cross-correlation 
function Rxy between the input x(t) and the output 
y(t) may be derived from the relation

Ε Εx t y t h v x x t v dv( ) ( ) ( ( ) ( ) ( )+



 = + −













∞

∫t t t
0

	

(17.25)

which has the expected value

R h v R v dv
xy xx
( ) ( ) ( )t t= −

∞

∫0 	 (17.26)

Thus, the cross-correlation between the input 
and output is simply the convolution of the input 
auto-correlation function, with the Fourier that is 
transforming these relations, yields the frequency 
domain expressions:

S j H j S j
yy xx
( ) ( ) ( )w w w=

2
	 (17.27)

and
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S j H j S j
xy xx
( ) ( ) ( )w w w= 	 (17.28)

where, Sxx(j𝜔)and Syy(j𝜔) are the input and the out-
put power spectra, and Sxy(j𝜔) is the input-output 
cross spectrum. The gain portion of the system 
frequency response may be estimated from the 
input and output power spectra as

H j
S j

S j
yy

xx

( )
( )

( )
w

w

w

2
= 	 (17.29)

However, this estimate gives no information 
about the phase. Moreover, it will be biased if 
there is noise at either the input or the output. A 
better approach is to determine the system fre-
quency response function from the input power 
spectrum and the input-output cross spectrum by 
using Equation 17.26 to get the relation:

H j
S j

S j
xy

xx

( )
( )

( )
w

w

w
= 	 (17.30)

Sxyis a complex number, so the frequency re-
sponse has both a magnitude (or gain) and a phase 
characteristic. Moreover, because of the averaging 
involved in computing the cross-spectrum, the 
estimate will not be biased as a result of output 
noise. However, if there is much output noise, 
then long data records and, hence, much averag-
ing may be needed to reduce the random error. 
Furthermore, noise at the input will still result in 
biased results.

The coherence squared function between the 
input x(t) and the output y(t) of a system is a real-
valued function defined by:

γ ω
ω

ω ωxy

xy

xx yy

j
S j

S j S j
2

2

( )
( )

( ) ( )
= 	 (17.31)

The coherence-squared function will have 
values in the range 0 to 1, and is analogous to the 
variance accounted for as a function of frequency 
(i.e., the square of the correlation coefficient 
function which arises in linear regression). For a 
constant parameter linear system with no noise, 
the coherence-squared will identically equal to 1. 
If the input and output are completely unrelated, 
the coherence-squared function will have a value 
of 0. If the coherence-squared function is greater 
than zero but less than one, three possibilities exist:

1. 	 Extraneous noise is present in the 
measurements.

2. 	 The system is not linear.
3. 	 y(t) is an output due to an input x(t) as well 

as to other inputs.

The coherence-squared can be interpreted as 
the fraction of the output variance that is linearly 
related to the input at each frequency.

Note that the coherence function is usually 
estimated from spectral estimates obtained by 
averaging a number of segments of the original 
data. The bias error associated with coherence 
estimates varies with the number of segments 
and the expected value of the coherence; the error 
decreases as either or both increase. Estimates of 
the coherence function may be in serious error 
if the number of segments is small and/or if the 
value of the coherence function is low. Indeed, 
the worst case occurs if only one segment is 
used to estimate the coherence function, since 
the coherence estimate will always be equal to 
one for this case.

The procedure for doing frequency analysis 
of a system using a stochastic input is:

1. 	 Apply a stochastic input having power over 
the range of frequencies where the system 
is expected to respond.

2. 	 Record the input and resulting output.
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3. 	 Compute the input spectrum, the output spec-
trum, and the input-output cross spectrum.

4. 	 Evaluate the gain, phase and coherence using 
Equations 17.29 through 17.31.

Note that since the stochastic input has 
power over a wide range of frequencies, the 
stochastic technique can be thought of as testing 
a large number of frequencies simultaneously. 
Consequently, it takes much less time than pure 
sinusoidal testing. Furthermore, the coherence 
provides a quantitative measure of how well the 
resulting linear model describes the system. If the 
coherence function is less than one, it is useful to 
determine whether this is due to additive noise or 
due to nonlinearities. One way to investigate this 
is to increase the amplitude of the input signal; if 
the problem is noise, then the coherence function 
should increase since the output signal-to-noise 
ratio (SNR) should increase. Conversely, if the 
problem is nonlinearity, then the coherence func-
tion will stay the same or will decrease. Another 
possibility is to repeat the experiment a number of 
times with the same input, and average the input 
and output signals before doing the analysis. If 
noise is the problem, then the coherence of the 
average signals will be greater than that of the 
individual trials. If the problem is nonlinearity, 
then the results will not change.

17.8.3. Applied Examples

Example 17.5: A method to model a dynamic 
linear physical system uses simple basic 
electrical components, namely a resistor (R), 
an inductor (L), a capacitor (C), and sources 
of potential (V) and current (I). Such method 
allows for a more natural modeling approach, 
since the system has a direct correspondence 
to its graphic representation that is more 
comprehensible than differential equations. 
In this example, we will introduce the basic 
elements of an electrical model of a system 

and the procedure to get the differential equa-
tion from the graphic description, which is 
based on the Kirchhoff’s circuit laws.

Let us consider the simplest dynamic linear model 
(“leaky integrator”) of a nerve cell, depicted in 
Figure 7. The resistors R1, R2, R3 represent the 
neuron’s dendrites and the respective voltages 
V1, V2, V3 are generated by the synapses from 
other neurons. The respective currents, I1, I2, 
I3 are integrated in the capacitor C that models 
the cell body membrane capacity. The presence 
of the membrane resistance, R4 denotes that the 
integrator is “leaky”. The differential equation of 
this model can be written as follows:

1. 	 We regard all the currents to have a direction 
towards out of the point, VC.

2. 	 Kirchhoff’s current law says that the sum 
of all currents in a single node is equal to 
zero, I I I I I

R R R R C1 2 3 4
0+ + + + =

3. 	 We replace the currents by their voltage 
values as follows: 
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4. 	 We can write the same equation in a 
simplified form, 
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C 0

This is a standard form for a first order dif-
ferential equation that can be solved analytically 
or numerically, or even be transformed to the 
Laplace domain for further analysis.

Example 17.6: A class of simple, yet accurate 
models, estimated from microelectrode 
recordings, can predict spike generation of 
single and multiple subthalamic nucleus 
(STN) neurons of Parkinson’s disease (PD) 
patients. The most characteristic attribute 
of an STN neural recording is the presence 
of bursting/quietness segments. It has been 
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suggested that the STN sends the burst-
ing pulse of spikes as a braking signal to 
reset the major basal ganglia output nuclei. 
This mechanism does not work right in 
abnormal situations, such as the PD. To 
be able to have a quantitative validation of 
the prediction of the model, the coherence 
between the predicted spike rhythm and the 
recorded one is estimated. In Figure 8, the 
two rhythms, calculated in 50 ms bin, and 
their coherence are shown. The coherence 
is 1 in low frequencies and drops after 2 Hz 
(3 dB point is calculated at 2.4 Hz). This 
depicts that the model predicts the ups and 
downs of the rhythm accurately; whereas, 

it misses one or two spikes (per 50 ms bin), 
explaining the small jittering observed in 
the exact spike prediction.

17.9. NONLINEAR MODELING OF 
PHYSIOLOGICAL CONTROL 
SYSTEMS

Any system which violates the principle of super-
position is non-linear. Many physical and virtually 
all biological systems are nonlinear. In this case, it 
is impossible to provide a general system descrip-
tion that can be used for any input, and applied at 

Figure 7. Associative linear neural network

Figure 8. Coherence estimate between the predicted and the observed spiking rhythm. The prediction is 
done using a model that accepts the local field potentials as its input.
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any time. Instead, functional series are typically 
used. A functional is a function whose argument 
is a function and whose value is a number. For 
instance, the convolution integral evaluated at a 
given time is a functional.

17.9.1. Volterra Series

An example of a functional series to describe a 
non-linear system is the Volterra series. Volterra 
showed that if a system is time invariant, has finite 
memory, and is analytic (differentiable), then the 
relation between input x(t) and output y(t) can be 
expressed as the infinite sum
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where, k0, k1(τ), k2(τ1,τ2), k3(τ1,τ2,τ3), … are the 
kernels of the system, and are symmetric functions 
of their arguments. The zero-eth order kernel k0, a 
constant, can be assumed to be zero without loss of 
generality by assuming y(t) = 0 when x(t) = 0 (in 
other words, we remove the non-zero bias). The 
nth order kernel describes the pattern of interac-
tion between n pieces of the past stimulus and its 
contribution to the total response. However, there 
are other contributions due to nth order interac-
tions also present in all other terms with kernels 
of order greater than n. That is the response to 
nth-order interactions is defined by all kernels 
of order n or greater; it is not isolated in the nth 
component. For example, the first-order term in 
the series is exactly the same as the convolution 
integral in a linear system, where the first kernel 
then represents the impulse response. However, 
note that in a non-linear system, the above series 
defines the impulse response (1st order effect) to 
depend on all kernels
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or equivalently,

y t k k t k t t k t t t k t t
n

( ) ( ) ( , ) ( , , ) ... ( ,..., ) ...= + + + + +
0 1 2 3

	
(17.34)

Hence, the use of impulses to isolate kernels 
of different order is not practical here. Another 
problem is that full description of a non-linear 
system with Volterra series, theoretically, has an 
infinite number of terms. Because the importance 
of each functional depends on the form of the 
non-linearity, and because the terms in this series 
are not orthogonal to each other, then

1. 	 One cannot know a priori when or where 
to truncate the series (small kernels can be 
followed by an important large kernel at 
higher dimensions).

2. 	 Adding terms changes all the previously eval-
uated kernels and they must be recomputed.

17.9.2. Wiener Series

To address the above issues, Wiener proposed a 
special form for a functional series description 
of a non-linear system. Assuming white Gauss-
ian noise as the input, the Gi functionals in the 
series are designed to be orthogonal with respect 
to each other and with respect to white noise 
input functionals of lower order. As a result, the 
importance of Wiener functionals in the series 
usually decrease in magnitude with kernel order, 
and adding terms does not affect already computed 
functionals. Furthermore, the mean squared error 
associated with truncation of the series is lowest 
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for Wiener descriptions, when compared to other 
series truncated at the same order (like Volterra).

Starting with the general Volterra series form, 
Wiener proposed

y t G h x t t t
m m m
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where, Gm are now orthogonal functions, x(t) is a 
Gaussian white-noise signal with zero mean, and 
hm is the set of Wiener kernels. Each hm is a sym-
metrical function with respect to its arguments. 
The first four Wiener kernels are defined by the 
following functionals:
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where, x(t) is Gaussian white noise of zero mean 
and power density spectrum φxx(f)=P (or other-
wise, autocorrelation ϕ τ δ τ

xx
P( ) ( )= . The func-

tionals have been selected to be orthogonal to 
each other so that

E G h x t G h x t
i i j j
; ( ) ; ( )
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
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(17.37)

Furthermore, Wiener constructed the function-
als so that a given Gk is orthogonal to all homog-
enous functionals of x(t) whose order is less than 
k, when x is white noise. For example, if x(t−τ) 
is an homogenous functional of order 1, then 
E G h x t t

k k
[ ; ( )]( )−{ } =t 0 , for k > 1. The kernels 

in a Volterra series {k} can be related to those in 
a Wiener series {h} according to even or odd 
terms:
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This makes it clear that Wiener kernels, in 
contrast to Volterra kernels, are polynomial func-
tions of P, the power of this noisy stimulus. Also, 
a given Wiener kernel is a function of higher order 
Volterra kernels.

17.9.3 Applied Example

Example 17.7: A special class of Volterra-Wiener 
non-linear models is the block oriented 
non-linear models in which a linear time 
invariant (LTI) dynamic block is preceded 
and/or followed by a static non-linearity. 
When the linear dynamic block is preceded 
by a static input non-linearity, the model is 
referred to as a Hammerstein model; and, 
when the linear dynamic block is followed 
by a static output non-linearity, the model 
is referred to as a Wiener model. Both are 
a special case of the situation in which the 
linear dynamic block is sandwiched between 
two static non-linear blocks, a Hammerstein-
Wiener (H-W) model.

Briefly, in state space, an H-W model is repre-
sented by
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where, u∈ℜ is the physical input to the plant, 
which is passed through the non-linear mapping 
f(u) to give the input v∈ℜ of the linear dynamic 
block. A, B, C, and D are the system matrices 
(of conformal dimensions) of the linear dynamic 
block, x(k+1|k)∈ℜ is the state at time k+1 cal-
culated at time k, w∈ℜ is the output of the linear 
block which is passed through the non-linear 
mapping h(w) to give the output y∈ℜ of the plant. 
The static non-linear functions f(u) and h(w) are 
assumed to be invertible. The H-W model can be 
used to investigate whether it is possible to infer 
STN spike trains using only the underlying local 
field potentials (LFPs) from intranuclear record-
ings, acquired intraoperatively during deep brain 
stimulation procedure. The model regards the LFPs 
to be the input, and the presence of the spikes to 
be the output of a Hammerstein-Wiener model 
and predicts, at least partially, that STN spikes 
can indeed be inferred from intranuclear LFPs, 
at least with moderate success. Such a model can 
be seen in Figure 9.

17.10. IDENTIFICATION OF 
PHYSIOLOGICAL CONTROL 
SYSTEMS

The system identification approach to constructing 
a mathematical model of a physiological system 
is much different than what has been presented 
until now. The modeler’s task is first to select a 
general form, or structure, for the mathematical 

model, and then estimate the parameter values. 
Often, a variety of model structures are evalu-
ated, and the most successful one is retained. In 
this section, we will first describe the estimation 
problem in general, and then concentrate on the 
pragmatic guidelines to select a model.

The general problem of parameter estimation 
is formalized as follows: Let the model’s general 
mathematical structure be represented by an op-
erator, M. Let the model depend on a set of pa-
rameters, ordered in a vector, θ. Then, for a 
specific parameter vector, θ0, the y(t,θ0)=Μ(θ0, 
u(t)) is a static input/output function or a transfer 
function in the Laplace domain, where u is the 
input and y is the output. Now, if the model struc-
ture, M, and the parameter vector, θ0, exactly 
represent the physical system, the objective of 
system identification is then to find a suitable 
model structure, M, and corresponding parameter 
vector, θ, given measurements of input and output. 
The identified model will have a parameter vec-
tor,q0 , and generate (̂ ) ˆ , ( )y t M u t= ( )q

0
, where 

(̂ )y t  is an estimate of the system output, y(t). The 
system identification problem is then to choose 
the model structure model, M, and find the cor-
responding parameter vector, q0 , that produces 
the model output that best predicts the measured 
system output.

In the remaining parts of this section, the 
identification steps that are usually involved for 
discrete models are presented. The process requires 
four steps, which are often applied iteratively:

Figure 9. A Hammerstein-Wiener cascade model is able to predict the spikes from the recorded local 
field potentials (Michmizos & Nikita, 2010).
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1. 	 Postulate a model form (structure) and select 
the appropriate identification tool.

2. 	 Postulate a model order and imbed data in 
a set of equations for the identification.

3. 	 Compare predictions to real observations in 
the data set used for identification (i.e., find 
residuals and their statistics), and estimate 
confidence in parameter estimates; then, 
correct model form or order as needed and 
repeat steps i-ii.

4. 	 Validate the selected model by examining 
predictions in new data sets in the same 
experiment or in completely novel experi-
mental protocols. If several model forms 
perform equivalently in step ii, they may 
not do so here when tested on new data.

First, a model order is selected, by fixing the 
model type and polynomial orders. The properties 
of the residual noise, r y y= − ˆ , y being the real 
output and ŷ being the predicted output, for the 
data set can be examined. For standard regression, 
if the residual is white with approximately Gauss-
ian distribution, its variance can be used to set 
confidence intervals on the parameters and decide 
if any of them are superfluous. If the noise sequence 
is not white, or diverges greatly from the normal 
distribution, then it could be assumed that we 
have either the wrong model form or the wrong 
order in the current form.

Pragmatic guidelines to select model structures 
at this stage are:

1. 	 Residual is nearly white, Gaussian and 
zero-mean: The t-statistics should be used 
in order to define confidence intervals on 
all the estimated parameters, or to examine 
those provided by the applied estimation 
function. If all are significantly different 
from zero at the desired confidence level, 
then the current model is a valid possibil-
ity, provided the quality of fit is satisfac-
tory (e.g., the %Variance of Accounted for 

(VAF) is high enough). If some parameters 
have confidence levels which include zero, 
then an attempt should be made by the in-
vestigator to fit another model with those 
parameters removed (if one is manipulating 
his/her own regressor matrix); otherwise, a 
fit with a supplied algorithm setting a lower 
order is to be attempted. Once an order for 
the current model form is decided, the final 
parameter estimates must then come from 
a final fit with that selected order.

2. 	 Residual is not white and not zero-mean: 
Assuming the underlying noise statistics are 
indeed Gaussian, this means that either the 
wrong model form (schematic or hypotheti-
cal relationship) is attained, or an insufficient 
number of parameters exist. The investigator 
should then increase the order and try again. 
Subsequently, the investiagator is to examine 
the current residuals for deterministic trends 
(like ramps or sinusoids), and adjust the 
model form accordingly.

3. 	 Residual is not Gaussian but is zero-mean 
and white: This may happen if the underly-
ing noise properties are actually themselves 
not Gaussian, or the wrong model order 
exists. Whatever the reason, one cannot rely 
on the usual t-statistics for the confidence 
intervals of estimated parameters – these 
could lead to erroneous selection of model 
order and/or pertinent parameters. In this 
case, it is often recommended to resort to 
‘Monte Carlo’ or ‘Bootstrap’ methods. 
These approaches are computationally de-
manding, but they generate pseudo statistics 
on parameter estimates from which more 
accurate confidence intervals can be deter-
mined, regardless of the form of each pa-
rameter’s probability distribution (e.g., limits 
for 95% of area under curve). Monte Carlo 
relies on repeating the estimation routine 
many times, using many experimental pro-
tocols, or dividing a large data set into 
multiple sets – but, it may not always be 
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feasible to have long experimental protocols. 
Bootstrap instead uses a single data set and 
generates multiple sets for parameter estima-
tion by for example: A) iteratively using 
each estimate to generate a new shuffled 
noise sequence (the investigator is to use 
r y y= − ˆ  as defined previously, shuffle 
randomly, and add back onto ŷ  for a ‘new’ 
data set), creating new virtual noisy data 
sets-, or B) selecting a subset of data ran-
domly from the original set to generate es-
timates with each. This is repeated as many 
times as necessary to obtain smooth param-
eter histograms; and, does not lengthen 
experimental data acquisition. However, 
there are differences between approaches A 
and B. In particular, method B means that 
each estimation run will have fewer data 
observations than that of the original experi-
mental data length; in method A, the number 
of observations entering the estimation step 
is always the same total as the whole data 
segment.

Finally, validation of the selected model should 
include a demonstration that the predictors perform 
well on new data not used in the original fitting 
procedure. This can be data reserved from the 
original experiment, or a totally new data stream 
from a different protocol. The best models will 
fit well the data used in the identification, and 
will also duplicate well other data sets. This last 
cross-validation step is the final test which can tell 
the best models from those specific to a special 
condition. Hence, this is an important step in jus-
tifying the final choice of a model form and order.

17.10.1 Applied Example

Example 17.8: Next, we will present a simple 
parameter estimation problem for a linear 
model, in order to illustrate the theory previ-
ously discussed. Let us model an unknown 

physiological system with a linear model 
y w u

i ii
=∑ . Please note that the real 

system may or may not be linear, and that 
the data we acquire from the experiments 
are usually noisy. But if we insist on finding 
the optimal linear model according the least 
square criterion, we have to find an optimum 
matrix notation, WT for which y=WTU, U 
being the input matrix. According to the least 
square criterion, we have to calculate 
W=Φ-1P, whereby P = E [Y∙U] and Φ = E 
[U∙UT], and where E stands for expectation 
and UT is the transpose input matrix. For 
further information on the origin and proof 
pertaining to the above discussion, the 
reader is to refer to a textbook on linear 
parameter estimation, e.g., (Ljung, 1999).

Assume that we have a static system with two 
inputs and one output, y=w1∙u1+ w2∙u2. To estimate 
the model’s parameters, we conduct an experiment 
measuring the inputs and the output four times, 
as shown in Table 1.

We now calculate the estimation of P as fol-
lows:
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Next, we calculate the estimation of Φ as 
follows:
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Now, we can calculate the optimal parameters 
WT=(Φ-1∙P)T=[1.975, 2.925].

We can see that the model’s outputs for the four 
experimental measurements in Table 2.
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As one can see, the model outputs are very 
similar to the data we acquired. However, in a 
real experiment, it is highly expected to have more 
noise than the one we had here. Hence, more 
experiments should be conducted to gather more 
data and have a good estimation of the model’s 
parameters.

17.11. ARTIFICIAL NEURAL 
NETWORKS FOR PHYSIOLOGICAL 
SYSTEMS CONTROL

Artificial neural network models represent a 
black box type of model. These models are used 
in situations where the precise functioning of the 
system is not understood or easily implemented, 
and only the sample input-output data are known. 
This section will provide a brief description of the 
basic principles of neural network control systems 
and their use in control of physiological systems. 
Neural networks have been used for more than 
two decades in solving engineering problems, 
especially in pattern recognition and pattern clas-
sification applications. Neural networks are also 
used in modeling problems that are difficult to 
solve. For instance, controlling a nonlinear system 
has always been an advanced modeling task that 
most of the times led to an insufficient solution. 
The introduction of the neural networks to the field 
of physiological systems control resulted in a new 
area of research for both the neural network and 
systems control scientific communities.

17.11.1. Basic Principles

The term neural network was traditionally used 
to refer to a network or circuit of biological neu-
rons. The usage of the term has changed to refer 
to artificial neural networks, which are composed 
of artificial neurons or nodes. Various neural 
network algorithms currently exist, but they all 
share common characteristics that include a set of 
inputs and outputs, the distributed processing of 
the information, and their adaptive parameteriza-
tion. The structure of a neural network resembles 
the structure of the nervous system. The input 
information inserted into such a network is col-
lectively processed by a group of distinct units 
(in analogy to the neurons). Each processing unit 
interacts with the information given locally, and 
then sends an output to other units or the environ-
ment (output information). The significance of a 
certain connection (synapse) between two units 
is determined by a value of strength (synaptic 
weight). These values modify the input-output 
behavior of the entire neural network, and are 
adjusted according to a learning algorithm. In order 
to design a neural network, one has to consider 
the internal characteristics, the architecture, and 
the number of the processing units, as well as the 
learning algorithm.

The architecture of the neural network is not 
the only analogy between the artificial and the 
biological systems. The internal characteristics of 
the processing unit mimic the ones of a neuron. A 
neuron receives chemical messages (inputs) from 

Table 1. System’s inputs and outputs.

u1 u2 y

-1 -1 -5.1

-1 1 1.1

1 -1 -0.8

1 1 4.7

u1 u2
ŷ

-1 -1 -4.90

-1 1 0.95

1 -1 -0.95

1 1 4.90

Table 2. Model’s outputs.
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other neurons that are transformed to dendritic 
potential, which is then added up in the neuron’s 
soma to fire an action potential (output). In general, 
the decision upon firing an action potential relies 
on a nonlinear function of a weighted summation 
of the neuron’s inputs. The most common equation 
used to model the decision is the sigmoid curve 
produced by the mathematical function having an 
“S ” shape, as shown in Figure 10. The general 
equation for a sigmoid function is

Y
e mx

=
+ −

1

1( )
	 (17.40)

where, x is the input (the weighted summation of 
the artificial neuron), and m is a constant that 
regulates the slope of the sigmoidal output func-
tion. For m = 1, the function is named logistic 
function and is related to population growth stud-
ies. Sometimes, a constant is added to the term 
–mx, and is called the bias of the sigmoid function. 
The inputs of an artificial neuron, ui, are related 
to their weighted summation by the equation

x w u
i i

i

n

=
=
∑
1

	 (17.41)

where, n is the number of neurons that give their 
outputs to the neuron, and wi is the synaptic weight 
from presynaptic neuron i to the postsynaptic 
neuron. Equations 17.40 and 17.41 denote that 
the output of an artificial neuron depends on its 
inputs only and does not depend on time; hence, 
the output is a static nonlinear function of the 
weighted summation of the inputs.

The most common architecture used in neural 
networks is a structure that uses three layers of 
processing units. The first layer, the input layer, 
processes the input information and sends its 
output to a second layer, called the hidden layer 
that sends the processed information to the last 
layer, the output layer. A neural network is called 
feedforward network if all its processing units 
receive inputs from the units of previous layers. 
Defining the number of the processing units on 
each layer is more of an art than a science.

A general learning algorithm, used to train a 
neural network, is a function of: i) the learning 
rate, η; ii) the activation of the presynaptic unit, 
ai, and that of the postsynaptic unit, aj; and, iii) a 
training (error in supervised learning techniques) 
signal, eij

∆w f a a e
ij i j ij
= ( , , , )h 	 (17.42)

Figure 10. Sigmoid function for various values of m
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Not all learning algorithms, used in practice, 
include all those parameters. For instance, a Heb-
bian learning algorithm changes the weights, wij, 
in proportion to the product of the presynaptic 
activation, ai, and the postsynaptic activation, 
aj. Another class of learning algorithms that is 
heavily used is the one that uses gradient descent 
techniques to adjust the synaptic weights, wij. An 
example is the error back-propagation algorithm 
that uses an error gradient descent technique. This 
technique passes the output error to previous layers 
of a neural network in order to estimate the input 
signal for any given neuron. These techniques are 
also classified as supervised learning techniques 
since they use a specification of the true output in 
order to estimate the output error of the network 
prediction. Other learning algorithms, such as 
reinforcement learning, are used when the true 
output of the network is not directly accessible.

The motivation behind the utilization of neural 
networks to control a system is usually our need to 
model a nonlinear process or the requirement for 
the control system to adapt. In a control system, 
the neural network mimics the behavior of one 
or more of the system’s components so well that 
it can even replace them. In supervised control 
systems, shown in Figure 11a, a neural network 
may replace the controller of the system in situa-
tions where the true controller is not time or cost 

efficient. The neural network is trained using 
learning data acquired from the system’s output. 
Alternatively, computer simulations of the true 
system can be used. The training (error) signal, eij, 
is usually the difference between the output of the 
original controller and the output of the network. 
After the network is adequately trained, it can 
replace the controller entirely. In direct inverse 
control systems, shown in Figure 11b, the neural 
network is used to estimate an inverse model of 
the system to be controlled. The network learns 
to map the output of the system to its input. Di-
rect inverse control systems are common among 
physiological control systems.

17.11.2. Applied Examples

Example 17.9: We will now use the basic notions 
described in previous section to construct a 
basic model for associative memory, which 
stands as well, as the most likely model for 
cognitive memories. It is based on the obser-
vation that human beings retrieve informa-
tion best when it is linked to other related 
information. That “linkage” between already 
known and new information is mathemati-
cally described by the weight (strength) of 
the connections between processing units of a 
neural network. The architecture, illustrated 

Figure 11. Single modules of controlling structures can be replaced from neural networks models
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in Figure 12, is the most general static linear 
neural network since the addition of neuron 
layers does not change the capability of the 
structure.

In this example, the input can be inferred as a set 
of characteristics of an object (e.g., a set of mea-
surements that describe features of a tumor in a 
CT image, such as tumor diameter, number of 
tumors found, level of seriousness with respect 
to location, etc.) and the output can be inferred 
as a decision (e.g., the degree of malignancy, the 
prognosis of the disease, etc.) For convenience 
reasons, we select the inputs and the outputs of 
the neural network to be binary {-1, 1}. Let us 
assume that a learning set of two inputs-output is 
given to train the neural network. Let the first 
input be u1 1 1 1 1= − −[ , , , ]  and let the second 
input be u2 1 1 1 1= − −[ , , , ] . The respective outputs 
are y1 1= [ ]  and y2 1= −[ ]. According to Hebb’s 
rule, the weights represent the correlation between 
the input and the output

w x y
i i i

L
=

=∑ε λ λ
λ 1

	

where, e is a constant called the learning rate, 
usually taken to be the reciprocal of the number of 
training vectors (usually referred to as the learning 
examples) presented. In this case, the weights of 
the neuron will be

W u
i

L
= { } =

× + − × −
× + − × −
− × + × −
− ×
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1
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Now, we question ourselves about what will 
be the result, y, if a new, unseen before, input is 
introduced into the neural network. Let us take 
for example, the input u = −[ , , , ]1 1 1 1 . For this 
vec tor,  the  output  i s  ca lcu la ted  as 
y w u

i ii
= = + − + =∑ 1 2 1 2 1 2 1 2 1/ / / / . As 

one can see, the result of what we acquire when 
u1  is the input of the neural network, which is 
what we really wanted, since the new item is 
closer to the first learning example (only one bit 
needs to be inversed to have an identical input, 
compared to three bits in the second learning 
example).

Figure 12. Associative linear neural network
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However, the associative memory has many 
disadvantages. A major drawback is that the stored 
data should be binary orthogonal vectors. Another 
one is that there are a lot of intra-neuron connec-
tions. Other nonlinear associative memories exist; 
however, they are not as simple as the example 
given and they are beyond the scope of this chapter.

Example 17.10:Figure 13 presents a personal-
ized insulin infusion advisory system (IIAS) 
which serves as a control algorithm towards 
the development of a closed-loop artificial 
pancreas using the subcutaneous (SC) route 
(Mougiakakou et al., 2010). The IIAS is 
able to provide real time estimations of the 
appropriate insulin infusion rate for type 1 
diabetes mellitus (T1DM) patients using con-
tinuous glucose monitors and insulin pumps. 
It is based on Nonlinear Model Predictive 
Control (NMPC) and comprises of two 
modules: i) a personalized glucose-insulin 
metabolism model, based on the combined 
use of a Compartmental Model (CM) and a 
Recurrent Neural Network (RNN), and ii) an 
NMPC strategy. For the in silico evaluation 
of the IIAS, a Mathematical Model (MM) of 
a patient with T1DM has been used. Each 
of the aforementioned modules is briefly 
described in the following.

Personalized glucose-insulin metabolism 
model: The model, which is based on the combined 
use of a CM and an RNN, is able to provide glu-
cose predictions (Zarkogianni et al., 2007; Mou-
giakakou et al., 2008). More specifically, informa-
tion regarding meal intake is fed to the CM, which 
simulates the glucose absorption into the blood 
from the gut. CM’s output along with the SC 
insulin intake and previous SC glucose measure-
ment are applied to the RNN, which models the 
patient’s glucose kinetics and predicts subsequent 
glucose levels. The CM for glucose absorption 
into the blood from the gut is linear and consists 
of one compartment, while the gastric emptying 

rate is given by trapezoidal or triangular function. 
The used RNN is a fully connected multilayered 
perceptron NN with two recurrent loops, the 
initial weights of which are set to unity. The RNN 
is trained using the Real Time Recurrent Learning 
(RTRL) algorithm (Williams & Zipser, 1989), 
which is a sequential, error-correction learning 
based algorithm and allows the RNN to update 
the weights, while operating, as long as the RNN 
is provided with the correct glucose level value. 
The teacher-force version of the RTRL has been 
applied, according to which the RNN replaces the 
previous glucose level prediction with the cor-
responding glucose level value, when available, 
in order to perform future predictions.

NMPC: The NMPC uses the personalized glu-
cose-insulin metabolism model, which provides 
estimates of the future glucose levels. The NMPC 
is based on an optimizer, which computes at each 
sample time future control movements based on 
the minimization of an appropriate cost function. 
Particularly, at each sample time: i) future outputs 
are generated by the personalized glucose-insulin 
metabolism model; ii) a cost function of the future 
control movements is minimized, providing a set 
of future control signals; and, iii) only the first ele-
ment of the suggested control sequence is applied 
to the system. The cost function encompasses the 
differences between the glucose predictions and 
the desired glucose level.

MM of a patient with T1DM: The MM of a Type 
1 diabetes patient consists of the following CMs: 
i) an SC insulin absorption model, ii) a glucose 
metabolism model, iii) a SC glucose absorption 
model, and iv) a model for the glucose absorption 
into the blood from the gut.

17.12. MODELING CHAOS 
IN PHYSIOLOGY

Reductionists’ approach treated the body as a 
machine in which the relationships among the 
subsystems were governed by deterministic laws. 
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Current research has proven that for a liveable 
system to maintain its milieu intérieur, the internal 
environment, a plethora of interrelated feedback 
loops are miraculously put in place and in balance. 
On the other hand, the phenomenological functions 
of a biological subsystem, especially the ones 
observed macroscopically, seem aperiodic and 
unpredictable in nature. The biological signals are 
so variable that they appear as random or noisy. 
To illustrate this “stochastic determinism”, we 
consider a large cruising boat, full of passengers. 
Any one of the passengers (processes) is free to 
wonder around the boat (system), whereas the 
boat itself has a determinate route, regardless of 
the random movements of its passengers. The 
paradigm illustrates that we are incredibly ordered 
on several levels, but irregularly so. The human 
body is not a deterministic machine, but an amaz-
ingly complex chaotic system.

Chaos (χάος) is an ancient Greek word given to 
someone to show that he was preponderant of all 
the others. Similarly, in science, chaos describes a 
deterministic system that is extremely complicated 
for its observer to be fully understood. From the 
point of view of an observer with limited capabili-
ties on data selection and information understand-
ing, a chaotic system is an inherently unpredictable 
system due to its extraordinary sensitivity to its 
internal conditions. For instance, in order to pre-

dict accurately the electrical activity in a certain 
area of the brain, one has to have a complete and 
precise description of everything that would have 
an effect on that particular brain area. It is logical 
to assume that for a human observer, the factors 
contributing to the area’s activity are infinite. What 
is more, each one of these factors plays a role in 
creating the area’s activity. That explains why an 
activity recorded from the brain of an individual 
never looks the same, even if the subject repeatedly 
executes the same function. Another characteristic 
of such systems is the presence of order under the 
absence of periodicity. The output of a chaotic 
system, although follows a general pattern (called 
strange attractor), it is random and never repeats 
itself. Another characteristic aspect is the ability of 
these systems to fall into the chaotic behavior and 
come out of it, depending on the situation. When 
the system instability becomes large enough, the 
system splits and returns to order (the analysis 
of such behaviors is called bifurcation analysis).

A chaotic system, although deterministic in its 
structure, appears to be extremely variable. The 
structure of a chaotic system is not required to be 
complex. In fact, simple nonlinear deterministic 
systems can exhibit chaotic behavior. For example, 
chaotic solutions to cellular membrane equations 
have been found (Chay, 1985).

Figure 13. A multicompartmental model of artificial pancreas that is based on neural networks
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The heart is one of the prime chaotic physi-
ological systems (Biktashev & Holden, 1998; 
Belair & Glass, 2003). A physician may judge upon 
the healthy behavior of the heart by its periodic 
beats. However, our hearts almost never beat the 
same way twice. A more thorough study reveals 
a varying interval between beats. More than one 
reason exists for this variability. The natural pace-
maker of the heart, named the sinoatrial node (SA 
node) and found in the right atrium of the heart, 
is a group of cells that generates the normal sinus 
rhythm. Stimulation of the parasympathetic fibers 
that reach the SA node causes a decrease in the beat 
rate. On the other hand, stimulation of sympathetic 
fibers that reach the SA node causes an increase 
in the SA node rate, and a subsequent increase 
of both the heart rate and the force of the heart 
contraction. The existence of the two antagonistic 
systems (sympathetic and parasympathetic) cre-
ates the diversity observed in the temporal distance 
between two subsequent beats. In addition, a third 
system, the respiratory system, further increases 
the heart rhythm variability since the beating of 
the heart increases with increased inspiration.

However, the best place for someone to search 
for chaotic behavior is the human brain. The 
fundamental reductionist approach, proposed in 
1891 by H. Waldeyer-Hartz, regarded the brain 
functions to be fully modeled in the level of dis-
crete individual neurons. The neuron doctrine, 
as this fundamental idea was named, is strongly 
opposed by modern chaos theory. The brain pos-
sesses a large number of feedbacks that give rise to 
internal uncertainties amplified over time, making 
long term predictions of brain activity impossible 
(Skarda & Freeman, 1990).

A question arises on whether the chaotic 
behavior observed in physiological systems is 
happening by accident or on purpose. It seems 
that there are several deterministic reasons for the 
existence of randomness in the biological systems. 
Take for example the heart we discussed previ-
ously. There is more than one good implication 
of the variations observed in heart rhythm. By 

varying its rhythm, the heart relaxes for differ-
ent time periods per beat; this limits its fatigue. 
Also, a chaotic system shows better adaptation 
capabilities. The heart is able to compensate for 
varying blood demands. From a person dreaming 
of playing a soccer game to someone actually 
running in a soccer field for 90 minutes, it is the 
variance in beat rhythm and intensity that makes 
the heart effective at any of the conditions met 
in an unknown external environment. When the 
body’s demands for blood increase, the heart is 
able to pick up the slack without the shock of a 
quick tempo change (Ward, 2001). In the brain, 
chaos is related to the ability to learn. A never 
seen before stimulus in the brain, moves the 
underlying subsystems to an unpatterned chaotic 
state. This chaos results in the ignition of a new 
network assembly that is specifically associated 
to the new stimuli. A chaotic system is also able 
to reach new solutions. Such a system is able to 
learn from its mistakes and create new pathways to 
deal with old problems. Thus, what was regarded 
as randomness in the brain, started to be proved 
as an essential part of normal brain function.

Although the first and most general single 
word definition of health was “balance”, it seems 
that “out of balance” situations inside the body 
are also connected to health. If we introduce to 
a linear system an input that is slightly out of its 
typical input range, the system’s output will most 
probably be derailed. A nonlinear system, even if 
it sees at its input a “bizarre” nudge, it will most 
probably return to its starting point. Let us look 
to what is happening in a diseased body. Take for 
example Parkinson’s disease and the basal ganglia 
system that controls motion. The amount of chaos 
in the Parkinsonian brain actually decreases as 
the loss of dopamine (a neurotransmitter used 
in synapses) forces neurons in the basal ganglia 
system to fire in synchrony. This synchrony is 
present in recordings and results in a beta band 
peak, observed in the local field potentials. The 
peak is considered to emerge as the projection of 
widespread synchronized beta band oscillations of 
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the underlying neuronal elements (Boraud et al., 
2005; Brown & Williams, 2005). From Parkinson’s 
disease to seizures, disease is recognized as an 
acute attack of order against chaos. Physicians 
have begun to classify a new order of “dynamical 
diseases” caused by abnormally periodic order. 
Epileptic seizures, Parkinson’s disease, heart at-
tack, and infant apnoea are just a few such dynamic 
disorders. Even aging itself is related to a loss 
of deterministic variability (Kaplan et al., 1991; 
Kim & Stringer, 1992). In fact, neurosurgeons 
are creating chaos in the brain as a form of treat-
ment of symptoms. Take, for example, the Deep 
Brain Stimulation procedure used in Parkinsonian 
patients. A stimulation lead is inserted into the 
brain to deliver an electrical impulse and return 
the brain to its previous chaotic state. It has re-
cently been found that the stimulation of the STN 
results in the loss of beta synchronization in the 
neurons inside the nucleus (Bronte-Stewart et al., 
2009). This is not the only application of chaos 
in medicine. The opportunities are as infinite as 
the dynamic systems themselves.

17.13. THE FUTURE OF 
PHYSIOLOGICAL SYSTEMS 
MODELING, SIMULATION, 
AND CONTROL

Physiological modeling is increasingly providing a 
sophisticated set of tools for processing measure-
ment inputs into clinically relevant outputs. Based 
on a physical and biological understanding of the 
underlying processes, models have the short-term 
potential to be used to extract information that is 
not directly available from the data itself, and, 
thus, aid clinical diagnosis. However, various 
challenges remain to be met in order to reach a 
level of modeling that would take full control 
of a physiological system. Substituting a physi-

ological system has significant potential to become 
feasible, and indeed some preliminary studies 
have shown significant improvement in body-
prosthetics that are controlled by models (see for 
example Song et al., 2007; Lebedev & Nicolelis, 
2006). To successfully implement this combined 
approach, it is essential that the mathematical 
models are sophisticated enough to capture the 
key physiological features of the system. This is 
a computational challenge in its own right; our 
body has anisotropic and multi-scale properties 
that must be realized in mathematical models and 
solved on real time simulations. In addition, the 
personalized physiological properties of each data 
set should be reflected to a change of parameters 
in the mathematical models; and, accordingly, the 
physiological models must be customized through 
inputting patient-specific structural and functional 
information. Within initiatives such as the Physi-
ome and Virtual Physiologic Human projects, 
the need to have universal simulation platforms, 
software languages, and in general the necessity 
to speak the same “modeling language” became 
apparent. It is also important to speak specifically 
for the brain. For the first time in history of man-
kind, the human brain initiated a discussion with 
itself. In this endeavor, it is extremely important 
to mention the requirement to develop more ad-
vanced statistical techniques applied specifically 
to brain modeling. The long-term aim should be 
the embracement of the power of modeling and 
the integration of simulations with clinically, 
scientifically, and economically effective data 
acquiring techniques in order to achieve the goal 
of personalized treatment. Physiological models 
that are able to combine patient specific data with 
the personal opinion of a physician can become 
a pivotal point in the healthcare system in terms 
of both prognosis and diagnosis. This will further 
increase the opinion of the society that science 
comes not only from but also for the human kind.
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17.14. PROFESSIONAL SOCIETIES 
AND ORGANIZATIONS

Engineering in Medicine and Biology Society 
(EMBS)

www.embs.org
NSR Physiome Project, National Simulation 

Resource, Department of Bioengineering, 
University of Washington, Seattle, WA, USA

http://www.physiome.org/
Virtual Physiological Human Network of Excel-

lence
http://www.vph-noe.eu/

17.15. CHAPTER SUMMARY

In this chapter, a variety of techniques to model 
physiological systems and study their underlying 
functions are described. The potential and limita-
tions of the presented methodologies are discussed 
and supported with appropriate examples. Com-
partmental analysis describes a biological system 
with a finite number of compartments. Almost all 
biological systems are inherently nonlinear, and a 
purely linear model is, thus, partially satisfactory. 
However, linear models show important advan-
tages due to their simplicity. Other approaches, 
such as nonlinear models and neural networks, may 
lack the theoretical foundation upon which linear 
modeling of physiological systems is based, but 
promising theoretical developments have attested 
the importance of these techniques for successful 
simulation and control of biological processes.
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