Bio-inspired computation

Biologically inspired computing (also bio-inspired computing) is a field of study that
loosely knits together subfields related to the topics of connectionism, social behavior and
emergence. It is often closely related to the field of artificial intelligence, as many of its
pursuits can be linked to machine learning. It relies heavily on the fields of biology,
computer science and mathematics. Biologically inspired computing is a major subset of
natural computation. The field of biocomputation has a twofold definition: the use of
biology or biological processes as metaphor, inspiration, or enabler in developing new
computing technologies and new areas of computer science; and conversely, the use of
information science concepts and tools to explore biology from a different theoretical
perspective. In addition to its potential applications, such as DNA computation,
nanofabrication, storage devices, sensing, and health care, biocomputation also has
implications for basic scientific research. It can provide biologists, for example, with an
IT-oriented paradigm for looking at how cells compute or process information, or help
computer scientists construct algorithms based on natural systems, such as evolutionary
and genetic algorithms. Biocomputing has the potential to be a very powerful tool.

The domain of bio-inspired computing is gradually getting prominence in the current
times. As organizations and societies are gearing towards a digital era, there has been
an explosion of data. This explosion of data is making it more and more challenging to
extract meaningful information and gather knowledge by using standard algorithms, due
to the increasing complexity of analysis. Finding the best solution increasingly becomes
very difficult to identify, if not impossible, due to the very large and dynamic scope of
solutions and complexity of computations. Often, the optimal solution for such a NP hard
problem is a point in the n-dimensional hyperspace and identifying the solution is
computationally very expensive or even not feasible in limited time. Therefore intelligent
approaches are needed to identify suitable working solutions.

In this context, intelligent meta-heuristics algorithms can learn and provide a suitable
working solution to very complex problems. Within meta-heuristics, bio-inspired
computing is gradually gaining prominence since these algorithms are intelligent, can
learn and adapt like biological organisms. These algorithms are drawing attention from
the scientific community due to the increasing complexity of the problems, increasing
range of potential solutions in multi-dimensional hyper-planes, dynamic nature of the
problems and constraints, and challenges of incomplete, probabilistic and imperfect
information for decision making. However, the fast developments in this domain is
increasingly getting difficult to track, due to different algorithms which are being
introduced very frequently. However, no study has attempted to identify these algorithms
exhaustively, explore and compare their potential scope across different problem
contexts.

In fact very few researchers are often familiar with the developments in the domain, where
more and more new algorithms are gaining acceptance and prominence. Therefore, with



limited visibility across algorithms, new researchers working in this domain tend to focus
on very limited and popular approaches, and therefore often “force-fit” algorithms rather
than exploring the most suitable one, based on the problem statement, due to limited
awareness. To address this gap, we review some of the popularly used bio-inspired
algorithms as well as introduce the newly developed algorithms which have a huge
potential for applications. Further to that, we also explore the potential scope of
applications of the algorithms in specific domains, based on published scientific literature.
While twelve of the slightly popular algorithms have been discussed, the scope of future
research in other bioinspired algorithms has been discussed. However, in depth
discussion about the implementation (e.g. pseudocode, etc) and enhancements in each
algorithm is beyond the scope of the current article. Further, specific detailed citations of
each application could not be provided, but we attempt to generalize whenever possible
based on other focused reviews.
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1. What is Life?

“What was life? No one knew. It was undoubtedly aware of itself, so soon as it was life; but it did not know
what it was”. Thomas Mann [1924]

Threshold of Complexity

“Seeking a connecting link, they had condescended to the preposterous assumption of structureless living
matter, unorganized organisms, which darted together of themselves in the albumen solution, like crystals in
their mother-liquor; yet organic differentiation still remained at once condition and expression of all life. One
could point to no form of life that did not owe its existence to procreation by parents”. Thomas Mann [1924].

“Nothing in biology makes sense without evolution”. Theodosius Dobzhansky [1973]

Biologically-inspired computing is an interdisciplinary field that formalizes processes observed in living
systems to design computational methods for solving complex problems, or simply to endow artificial
systems with more natural traits. But to draw more than superficial inspiration from Biology we need to
understand and discuss the concept of life. It should be noted that for the most part of the history of
humanity, the question of what life is was not an important issue. Before the study of mechanics became
important, everything was thought to be alive: the stars, the skies, the rivers and mountains, etc. There was
no non-life, so the concept was of no importance. It was only when people started to see the World as
determined by the laws of mechanics that the question arose. If all matter follows simple physical laws, then
what is indeed the difference between life and non-life, between biology and physics? Let us then start with
a current dictionary definition:

“life adj.— n.1. the general condition that distinguishes organisms from inorganic objects and dead organisms,
being manifested by growth through metabolism, a means of reproduction, and internal regulation in response to
the environment. 2. the animate existence or period of animate existence of an individual. 3. a corresponding state,
existence, or principle of existence conceived of as belonging to the soul. 4. the general or universal condition of
human existence. 5. any specified period of animate existence. 6. the period of existence, activity, or effectiveness
of something inanimate, as a machine, lease, or play. 7. animation; liveliness; spirit: The party was full of life. §.
the force that makes or keeps something alive; the vivifying or quickening principle.” [Random House Webster’s
Dictionary]

The definitions above fall into three main categories: (1) life as an organization distinct from inorganic matter
(with an associated list of properties), (2) life as a certain kind of animated behavior, and (3) life as a special,
incommensurable, quality—vitalism. Throughout this course we will see that all principles, and indeed all
controversies, associated with the study of life fall into one of these categories or the differences among them.
The third category has been discarded as a viable scientific explanation, because for science nothing is in
principle incommensurable. The question of whether life is organized according to a special design,
intelligent or mysterious, pertains to metaphysics. If the agent of design cannot be observed with physical
means, then it is by definition beyond the scope of science as it cannot be measured, and any theories derived
from such a concept cannot tested.

While metaphysical dispositions do not pertain to science, many scientists have observed that a naive
mechanistic decomposition of life may also fail to explain it. The traditional scientific approach has lead the
study of living systems into a reductionist search for answers in the nitty-gritty of the biochemistry of living
organisms. This alternative sees life as nothing more than the complicated physics of a collection of moving



bodies. However, the question remains unanswered since there are many ways to obtain some complicated
dynamics, but of all of these, which ones can be classified as alive? What kind of complexity are we looking
for? No one disputes that life is some sort of complex material arrangement, but when do we reach a
necessary threshold of complexity after which matter is said to be living? Is it a discrete step, or is life a fuzzy
concept? To understand it without meaningless reduction, must we synthesize organizations with the same
threshold of complexity (first category above), or is it enough to simulate its animated behavior (second
category above)?

Information Organizes and Breeds Life
“Life is a dynamic state of matter organized by information”. Manfred Eigen [1992]

“Life is a complex system for information storage and processing”. Minoru Kanehisa [2000]

Traditionally life has been identified with material organizations which observe certain lists of properties, e.g.
metabolism, adaptability, self-maintenance (autonomy), self-repair, growth, replication, evolution, etc. Most
living organisms follow these lists, however, there are other material systems which obey only a subset of
these rules, e.g. viruses, candle flames, the Earth, certain robots, etc. This often leads to the view that life is
at best a fuzzy concept and at worst something we are, subjectively, trained to recognize—Ilife is what we can
eat—and is thus not an objective distinction. The modern-day molecular biology view of life, on the other
hand, tends to see life as a material organization that if not completely defined by genomic information, is
at least fully controlled by it. Thus, when Craig Venter’s team [Gibson et al, 2010] recently produced a
bacteria with a “prosthetic genome” [a termed coined by Mark Bedau, see Nature | Opinion, 2010] copied
from another bacteria but synthesized in the lab, the momentous synthetic biology feat was announced as the
creation of the first synthetic or artificial life form.

The artificial life field, whose members tend to follow the fuzzy list of properties conception of life, does not
typically recognize Venter’s bacteria with a prosthetic genome as a bona fide synthesis of artificial life, since
it relies on the pre-existence of a working, naturally-obtained cell to implant a prosthetic genome into. Even
most molecular biologists will agree that we are nowhere near understanding, let alone synthesizing an
artificial cell from scratch [e.g. George Church, see Nature | Opinion, 2010]. Nonetheless, Venter’s
achievement begs at least the question of what is it about life’s design principle that makes it easier to
synthesize a working prosthetic genome than a working “prosthetic proteome or metabolome™? It also makes
us think about what does “understanding life”” mean for biology, biomedical technology, artificial life, and
informatics? Why is genetic information so important and how does it relate to information technology?

Life requires the ability to both categorize and control events in its environment in order to survive. In other
words, organisms pursue (or even decide upon) different actions according to information they perceive in
an environment. Furthermore, living organisms reproduce and develop from genetic information. More
specifically, genetic information is transmitted “vertically” (inherited) in phylogeny and cell reproduction,
and expressed “horizontally” within a cell in ontogeny for the functioning of living organisms as they interact
and react with their environments—we are now sure that genetic information can also be transmitted
horizontally between organisms and play an important role in evolution [Goldenfeld & Woese 2007; Riley,
2013]. Indeed, the difference between living and non-living organizations seems to stand on the ability of
the former to use relevant information for their own functioning. It is this “relevant” which gives life an extra
attribute to simple mechanistic interactions. When an organization is able to recognize and act on aspects of
its environment which are important to its own survival, we say that the mechanisms by which the
organization recognizes and acts are functional in reference to the organization itself (self-reference). Physics
is not concerned with function. A physical or chemical description of DNA is certainly possible, but will tell
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us nothing as to the function of a DNA molecule as a gene containing relevant information for a particular
organism. Only in reference to an organism does a piece of DNA function as a gene (e.g. an enzyme with
some effect in an environment).

Thus it is remarkable that in Venter’s experiment, a cell with a synthesized prosthetic genome from a similar
but distinct organism, was able to reproduce over and over resulting in a cell with a different phenotype from
the original, implanted cell—in effect, a cell re-programmed by a synthesized genome. Is life then a type of
computer that can be reprogrammed? This also leads us to question how general-purpose can such genomic
re-programming be? Will it be restricted to very narrow classes of similar organisms, or will it ever be
possible to re-program any prokaryotic or eukaryotic cell ?

Emergence and Explanation

“First, nothing in biology contradicts the laws of physics and chemistry; any adequate biology must be consonant
with the ‘basic’ sciences. Second, the principles of physics and chemistry are not sufficient to explain complex
biological objects because new properties emerge as a result of organization and interaction. These properties can
only be understood by the direct study of the whole, living systems in their normal state. Third, the insufficiency of
physics and chemistry to encompass life records no mystical addition, no contradiction to the basic sciences, but
only reflects the hierarchy of natural objects and the principle of emergent properties at higher levels of
organization”. Stephen Jay Gould [1984].

This issue could be rephrased in terms of the notion of emergence. Whatever (macro-level) organization exists
after the complexity threshold for life is passed, we may say that it is emergent because its attributes cannot
be completely explained by the (micro-) physical level. In particular, function, control, and categorization
cannot be explained by the mechanics and dynamics of the components of life alone. Notice, however, that
emergence does not imply vitalism or dualism. When we say that certain characteristics of life cannot be
explained by physics alone, we mean that they must be explained by different, additional models—namely,
informational, historical and functional descriptions. In other words, though biological function, control, and
categorization cannot be explained by physics alone, organisms, like anything else, must nonetheless follow
physical laws. But information is contextual, and therefore requires more than universal models: it requires
contingent, context-specific descriptions. In particular, the origin of life, is a problem of emergence of
information from a physical milieu under specific constraints [Eigen, 1992]. This is the crux of complex
systems: the interplay between micro- and macro-level descriptions determines their behavior, and both levels
(emergence) are required to understand complexity.

The definition of emergence as an epistemological, explanatory requirement, is related to the notion of
emergence-relative-to-a-model [Rosen, 1985; Cariani, 1989] or intensional emergence [Salthe 1991]. Tt
refers to the impossibility of epistemological reduction of the properties of a system to its components [Clark,
1996]. As an example, we can think of phase transitions such as that of water in its transition from liquid to
gas. Water and its properties cannot be rephrased it terms of the properties of hydrogen and oxygen, it needs
a qualitatively different model. Another example of complementary models of the same material systems is
the wave-particle duality of light.

Physicists understand the laws of nature (as best they can), but it takes engineers to control nature. The very
best physicists are the very best engineers, but those are exceedingly rare (e.g. Von Neumann). The goal of
complex systems is to understand organized complexity (life, society, cognition) in the same way physicists
understand nature [Weaver, 1948]. Biology, as a discipline, has not entirely “made up its mind” if it wants
to understand life as a physicist or control it as an engineer. Due to its focus on the micro-level of life, its
biochemistry, molecular biology follows essentially a (reverse-) engineering, black-box methodology



(knockouts, controls, etc.). This leads to a bit of a schizophrenic agenda: focusing exclusively on micro-level
experiments in order to suggest macro-level understandings. If the goal is control of biology, say for
biomedical advances, then we really need to focus on biotechnology engineering. Ifthe goal is understanding,
then we need to focus more on macro-level organized complexity. Ideally, a healthy life sciences program
would tie the need to understand with the need to control better—Ilike physicists and engineers do.

This is where complex systems, artificial life, and bio-inspired computing can contribute to a wider arena of
the life sciences; they can be used as laboratories for experimenting with theories of organized complexity,
and thus enrich our understanding of life. Artificial life concerns both the simulation and realization of life
in some artificial environment, usually the computer. At least regarding the second of its goals, artificial life
aims to understand the fundamental micro/macro-level interaction that leads to organized complexity. Bio-
inspired computing, as a more pragmatic endeavor, does not need to concern itself with synthesizing actual
life, but only with drawing analogies from life (real and artificial). Nonetheless, if the main motivation of bio-
inspired computing is that life with its designs has already solved versions of many complex engineering
problems we are interested in, then a thorough and accurate understanding of the essential characteristics of
life is inescapable. Moreover, by abstracting context-specific principles of life to make them relevant in other
settings, provides a useful laboratory to experiment with theoretical biology.
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2. The logical Mechanisms of Life

“The designs found in nature are nothing short of brilliant, but the process of design that generates them is utterly
lacking in intelligence of its own”. Daniel Dennett, NY Times 2005

Life-As-1t-Could-Be: but, what is non-life-as-it-could-be?

“Artificial Life [AL] is the study of man-made systems that exhibit behaviors characteristic of natural living systems.
It complements the traditional biological sciences concerned with the analysis of living organisms by attempting
to synthesize life-like behaviors within computers and other artificial media. By extending the empirical foundation
upon which biology is based beyond the carbon-chain life that has evolved on Earth, Artificial Life can contribute
to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-be. [...] [AL] views
life as a property of the organization of matter, rather than a property of the matter which is so organized. Whereas
biology has largely concerned itself with the material basis of life, Artificial Life is concerned with the formal basis
oflife. [... It] starts at the bottom, viewing an organism as a large population of simple machines, and works upwards
synthetically from there — constructing large aggregates of simple, rule-governed objects which interact with one
another nonlinearly in the support of life-like, global dynamics. The ‘key’ concept in AL is emergent behavior.”
[Langton, 1989, pp 1-2]

“Artificial Life is concerned with tuning the behaviors of such low-level machines that the behavior that emerges
at the global level is essentially the same as some behavior exhibited by a natural living system. [...] Artificial Life
is concerned with generating lifelike behavior.” [Langton, 1989, pp 4 and 5]

The previous quotes indicate the goals of Artificial Life according to Chris Langton: the search for complex,
artificial, systems which instantiate some kind of lifelike organization. The field is interested in both
synthesizing an actual artificial living organization, as well as simulating lifelike behavior. The first goal is
more ambitious and related to the first definition of life introduced in lecture one, while the second goal is
related to the second definition. The methodology to reach either of these goals is also in line with the notion
of emergence mentioned in lecture one: from the non-linear interaction of simple, mechanistic, components,
we wish to observe the emergence of complicated, life-like, unpredictable, behavior. Natural living organisms
are likewise composed of non-living components. As pointed out in lecture one, the origin problem in biology
is precisely the emergence of life from non-living components. The material components follow, and are
completely described, by physical laws, however, a mechanistic explanation of the overall living system is
incomplete. Similarly, in Artificial Life, we have formal components obeying a particular set of axioms, and
from their interaction, global behavior emerges which is not completely explained by the local formal rules.
Clearly, the formal rules play the role of an artificial matter and the global behavior, if recognized as life-like,
plays the role of an artificial biology.

“Of course, the principle assumption made in Artificial Life is that the ‘logical form’ of an organism can be
separated from its material basis of construction, and that ‘aliveness’ will be found to be a property of the former,
not of the latter.” [Langton, 1989, page 11]

The idea is that if we are able to find the basic design principles of living organization, then the material
substrate used to realize life is irrelevant. By investigating these basic principles we start studying not only
biological, carbon-based, life — life-as-we-know-it— but really the universal rules of life, or life-as-it-could-
be. Moreover, from a better understanding of the design principles of life, we can use them to solve
engineering problems similar to those that living organisms face [Segel and Cohen, 2001; DeCastro and Von
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Zuben, 2005]. Several problems have been raised regarding this separation of matter from form, or the search
for a universality without matter [Cariani, 1992; Moreno et al, 1994], which will not be discussed here. What
needs to be made more explicit is the relationship between the two distinct goals of AL.

Looking at emergent behavior, obtained from formal complex systems, in search of interesting behavior leads
to a certain circularity. If AL is concerned with finding life-like behavior in artificial, universal, systems, we
are ultimately binding life-as-could-be to the behavior of life-as-we-know-it by virtue of some subjective
resemblance. This can hardly be accepted as the search for universal principles.

“They say, ‘Look, isn’t this reminiscent of a biological or a physical phenomenon!” They jump in right away as if
it’s a decent model for the phenomenon, and usually of course it’s just got some accidental features that make it look
like something.” [Jack Cowan as quoted in Scientific American, June 1995 issue, “From Complexity to Perplexity”,
by J. Horgan, page 104]

“Artificial Life — and the entire field of complexity—seems to be based on a seductive syllogism: There are simple
sets of mathematical rules that when followed by a computer give rise to extremely complicated patterns. The world
also contains many extremely complicated patterns. Conclusion: Simple rules underlie many extremely complicated
phenomena in the world. With the help of powerful computers, scientists can root those rules out.” [J. Horgan,
Scientific American, June 1995 issue, “From Complexity to Perplexity”, page 107]

“Artificial Life is basically a fact-free science”. [John Maynard Smith as quoted in Scientific American, June 1995
issue, “From Complexity to Perplexity”, by J. Horgan, page 107]

The problem is that Artificial Life must be compared to something, otherwise it becomes a factless
manipulation of computer rules with subjective resemblances to real life. Again, we are faced with many
possible types of emergent complex behaviors, this time formal, but what kinds of behaviors can be classified
as “life-as-could-be”? What is the formal threshold of complexity needed? In the natural world we are able
to distinguish life from non-life, biology from physics due to the known signatures of bio-chemistry. In the
logical realm, we likewise need a formal criteria to distinguish logical life from logical non-life, artificial life
from artificial physics.

“Artificial Life must be compared with a real or an artificial nonliving world. Life in an artificial world requires
exploring what we mean by an alternative physical or mathematical reality.” [Pattee, 1995]

The two goals of AL are usually described as hard and soft AL respectively. The first concerns the synthesis
of artificial life from computational or material (e.g. embodied robotics) components. The second is interested
in producing life-like behavior and is essentially metaphorical. To be accepted as a scientific field, Alife
cannot settle for subjective rules of what constitutes living behavior. Indeed, whether we want to synthesize
life or merely simulate a particular behavior of living organisms, we need investigate the rules that allow us
to distinguish life from non-life . Only by establishing an artificial physics, from which an artificial biology
can emerge, and a theory, or set of rules, distinguishing the two, can we aim at a proper science based on fact.
In other words, the methodology of Artificial Life requires existing theories of life to be compared against;
it can also contribute to the meta-methodology of Biology by allowing us to test and improve its theories
beyond the unavoidable material constraints, such as the incomplete fossil record or measurement of cellular
activity. Naturally, the requirements for hard AL are much stricter, as we are not merely interested in
behaviors that can be compared to real biological systems with looser or stricter rules, but the actual
realization of an artificial organization that must be agreed to be living against some theory. Soft AL, may
restrict itself to particular behavioral traits which need only to be simulated to a satisfactory degree.



Simulations, Realizations, Systemhood, Thinghood, and Theories of Life

“Boids are not birds; they are not even remotely like birds; they have no cohesive physical structure, but rather exist
as information structures — processes — within a computer. But — and this is the critical ‘but’— at the level of
behaviors, flocking Boids and flocking birds are two instances of the same phenomenon: flocking. [...] The
‘artificial’ in Artificial Life refers to the component parts, not the emergent processes. If the component parts are
implemented correctly, the processes they support are genuine — every bit as genuine as the natural processes they
imitate. [...] Artificial Life will therefore be genuine life —it will simply be made of different stuff than the life that
has evolved on Earth.” [Langton, 1989, pp. 32-33]

“Simulations and realizations belong to different categories of modeling. Simulations are metaphorical models that
symbolically ‘stand for’ something else. Realizations are literal, material models that implement functions.
Therefore, accuracy in a simulation need have no relation to quality of function in a realization. Secondly, the
criteria for good simulations and realizations of a system depend on our theory of the system. The criteria for good
theories depend on more than mimicry, e.g., Turing Tests.” [Pattee, 1989, page 63]

As Pattee points out, the bottom line is that a simulation, no matter how good it is, is not a realization.
Nonetheless, it may still be possible to obtain artificial living organisms (realizations) if, from an artificial
environment, we are able to generate, in a bottom-up manner, organizations which conform to some theory
of life we wish to test. Howard Pattee [1989] has proposed that if emergent artificial organisms are able to
perform measurements, or in other words, categorize their (artificial) environment, then they may be
considered realizations. Some claim that computational environments do not allow for this creative form of
emergence [see Cariani, 1992; Moreno, et all, 1994]. In any case, whatever artificial environment we may
use, computational or material, we need a theory allowing us to distinguish life from non-life.

Related to this issue, and in the context of complex systems science, is the search of those properties of the
world which can be abstracted from their specific material substrate: systemhood from thinghood. Systems
science is concerned with the study of systemhood properties, but there may be systems from which
systemhood cannot be completely abstracted from thinghood. Life is sometimes proposed as one of those
systems [see Rosen, 1986, 1991; Moreno et al, 1994; Pattee, 1995]. The difficulty for systems science, or
complexity theory, lies precisely in the choice of the appropriate level of abstraction. If we abstract enough,
most things will look alike, leading to a theory of factless, reminiscent analogies, exposed by Cowan and
Maynard-Smith above. If, on the other hand, we abstract too little, all fields of inquiry tend to fall into
increasingly specific niches, accumulating much data and knowledge about (context-specific) components
without much understanding of, or ability to control, the (general) macro-level organization. In the context
of life, we do not want to be tied uniquely to carbon-based life, or life-as-we-know-it, but we also do not want
life-as-could-be to be anything at all. The challenge lies precisely on finding the right amounts of systemhood
and thinghood, as well as the interactions between the two, necessary for a good theory of life, real or
artificial.
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3. Formalizing and Modeling the World

“When you can measure what you are speaking of and express it in numbers you know that on which
you are discoursing. But if you cannot measure it and express it in numbers. your knowledge is of a
very meagre and unsatisfactory kind.”. (Lord Kelvin)

The Nature of Information and Information Processes in Nature1

The word information derives from the Latin informare (in + formare), meaning to give form, shape, or
character to. Etymologically, it is therefore understood to be the formative principle of something, or to
imbue with some specific character or quality. However, for hundreds of years, the word information is used
to signify knowledge and aspects of cognition such as meaning, instruction, communication, representation,
signs, symbols, etc. This can be clearly appreciated in the Oxford English Dictionary, which defines
information as “the action of informing; formation or molding of the mind or character, training, instruction,
teaching; communication of instructive knowledge”.

When we look at the world and study reality, we see order and structure everywhere. There is nothing that
escapes description or explanation, even in the natural sciences where phenomena appear sometimes
catastrophic, chaotic and stochastic. A good example of order and information are our roads. Information
can be delivered by signs. Drivers know that signs are not distant things, but they are about distant things
in the road. What signs deliver are not things but a sense or knowledge of things — a message. For
information to work that way, there have to be signs. These are special objects whose function is to be about
other objects. The function of signs is reference rather than presence. Thus a system of signs is crucial for
information to exist and be useful in a world, particularly for the world of drivers!

The central structure of information is therefore a relation among signs, objects or things, and agents capable
of understanding (or decoding) the signs. An AGENT is informed by a SIGN about some THING. There
are many names for the three parts of this relation. The AGENT can be thought of as the recipient of
information, the listener, reader, interpretant, spectator, investigator, computer, cell, etc. The SIGN has been
called the signal, symbol, vehicle, or messenger. And the about-some-THING is the message, the meaning,
the content, the news, the intelligence, or the information.

The SIGN-THING-AGENT relation is often understood as a sign-system, and the discipline that studies sign
systems is known as Semiotics. In addition to the triad of a sign-system, a complete understanding of
information requires the definition of the relevant context: an AGENT is informed by a SIGN about some
THING in a certain CONTEXT. Indeed, (Peircean) semiotics emphasizes the pragmatics of sign-systems,
in addition to the more well-known dimensions of syntax and semantics. Therefore, a complete (semiotic)
understanding of information studies these three dimensions of sign-systems:

1. Semantics: the content or meaning of the SIGN of a THING for an AGENT; it studies all aspects
of the relation between signs and objects for an agent, in other words, the study of meaning.
2. Syntax: the characteristics of signs and symbols devoid of meaning; it studies all aspects of the
relation among signs such as their rules of operation, production, storage, and manipulation.
3. Pragmatics: the context of signs and repercussions of sign-systems in an environment; it studies

' This subsection is an excerpt of [Rocha and Schnell, 2005]
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how context influences the interpretation of signs and how well a signs-system represents some
aspect of the environment.

Signs carry information content to be delivered to agents. However, it is also useful to understand that some
signs are more easily used as referents than others. In the beginning of the 20™ century, Charles Sanders
Peirce defined a typology of signs:

1. Icons are direct representations of objects. They are similar to the thing they represent. Examples
are pictorial road signs, scale models, and of course the icons on your computer. A footprint on the
sand is an icon of a foot.

2. Indices are indirect representations of objects, but necessarily related. Smoke is an index of fire,
the bell is an index of the tolling stroke, and a footprint is an index of a person.

3. Symbols are arbitrary representations of objects, which require exclusively a social convention
to be understood. A road sign with a red circle and a white background denotes something which is
illegal because we have agreed on its arbitrary meaning. To emphasize the conventional aspect of the
semantics of symbols, consider the example of variations in road signs: in the US yellow diamond
signs denote cautionary warnings, whereas in Europe a red triangle over a white background is used
for the same purpose. We can see that convention establishes a code, agreed by a group of agents,
for understanding (decoding) the information contained in symbols. For instance, smoke is an index
of fire, but if we agree on an appropriate code (e.g. Morse code) we can use smoke signals to
communicate symbolically.

Clearly, signs may have iconic, symbolic and indexical elements. Our alphabet is completely symbolic, as
the sound assigned to each letter is purely conventional. But other writing systems such as Egyptian or Mayan
hieroglyphs, and some Chinese characters use a combination of phonetic symbols with icons and indices. Our
road signs are also a good example of signs with symbolic (numbers, letters and conventional shapes), iconic
(representations of people and animals) and indexical (crossing out bars) elements.

Finally, it is important to note that due to the arbitrary nature of convention, symbols can be manipulated
without reference to content (syntactically). This feature of symbols is what enables computers to operate.
As an example of symbol manipulation without recourse to content, let us re-arrange the letters of a word,
say “deal”: dale, adel, dela, lead, adle, etc. We can produce all possible permutations (4! = 4x3x2x1 =
24) of the word whether they have meaning or not. After manipulation, we can choose which ones have
meaning (in some language), but that process is now a semantic one, whereas symbol manipulation is purely
syntactic. All signs rely on a certain amount of convention, as all signs have a pragmatic (social) dimension,
but symbols are the only signs which require exclusively a social convention, or code, to be understood.

We are used to think of information as pertaining purely to the human realm. In particular, the use of
symbolic information, as in our writing system, is thought of as technology used exclusively by humans.
Symbols, we have learned, rely on a code, or convention, between symbols and meanings. Such a
conventional relation usually specifies rules created by a human community. But it can have a more general
definition:

“A code can be defined as a set of rules that establish a correspondence between two independent
worlds”. The Morse code, for example, connects certain combinations of dots and dashes with the letters
of the alphabet. The Highway Code is a liaison between illustrated signals and driving behaviours. A
language makes words stand for real objects of the physical World.” [Barbieri, 2003, page 94]
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We can thus think of a code as a process that implements correspondence rules between two independent
worlds (or classes of objects), by ascribing meaning to arbitrary symbols. Therefore, meaning is not a
characteristic of the individual symbols but a convention of the collection of producers and recipients of the
encoded information.

Interestingly, we can see such processes in Nature, where the producers and recipients are not human. The
prime example is the genetic code, which establishes a correspondence between DNA (the symbolic genes
which store information) and proteins, the stuff life on Earth is built of. With very small variations, the
genetic code is the same for all life forms. In this sense, we can think of the genetic system and cellular
reproduction as a symbolic code whose convention is “accepted” by the collection of all life forms.

Other codes exist in Nature, such as signal transduction from the surface of cells to the genetic system, neural
information processing, antigen recognition by antibodies in the immune system, etc. We can also think of
animal communication mechanisms, such as the ant pheromone trails, bird signals, etc. Unlike the genetic
system, however, most information processes in nature are of an analog rather than digital nature. Throughout
this course we will discuss several of these natural codes.

Formalizing Knowledge: Uncovering the Design Principles of Nature’

Once we create symbols, we can also hypothesize relationships among the symbols which we can later check
for consistency with what we really observe in the World. By creating relationships among the symbols of
things we observe in the World, we are in effect formalizing our knowledge of the World. By formalizing
we mean the creation of rules, such as verbal arguments and mathematical equations, which define how our
symbols relate to one another. In a formalism, the rules that manipulate symbols are independent of their
meaning in the sense that they can be calculated mechanically without worrying what symbols stand for.

It is interesting to note that the ability to abstract characteristics of the world from the world itself took
thousands of years to be fully established. Even the concept of number, at first was not dissociated from the
items being counted. Indeed, several languages (e.g. Japanese) retain vestiges of this process, as different
objects are counted with different variations of names for numbers. Physics was the first science to construct
precise formal rules of the things in the world. Aristotle (484-322 BC) was the first to relate symbols more
explicitly to the external world and to successively clarify the nature of the symbol-world (symbol-matter)
relation. “In his Physics he proposed that the two main factors which determine an object's speed are its
weight and the density of the medium through which it travels. More importantly, he recognized that there
could be mathematical rules which could describe the relation between an object's weight, the medium's
density and the consequent rate of fall.” [Cariani, 1989, page 52] The rules he proposed to describe this
relations were:

1. For freely falling or freely rising bodies: speed is proportional to the density of the medium.
2. In forced motion: speed is directly proportional to the force applied and inversely proportional
to the mass of the body moved

This was the first time that the relationships between observable quantities were hypothesized and used in
calculations. Such a formalization of rules as a hypothesis to be tested is what a model is all about.
Knowledge is built upon models such as this that sustain our observations of the World.

2 This subsection is an excerpt of [Rocha and Schnell, 2005b]
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“While these quantities were expressed in terms of numbers, they were still generally regarded as inherent
properties of the objects themselves. It was not until Galileo took the interrelationships of the signs
themselves as the objects of study that we even see the beginnings of what was to be progressive
dissociation of the symbols from the objects represented. Galileo's insight was that the symbols
themselves and their interrelations could be studied mathematically quite apart from the relations in the
objects that they represented. This process of abstraction was further extended by Newton, who saw that
symbols arising from observation [...] are distinct from those involved in representing the physical laws
which govern the subsequent motion”. [Cariani, 1989, page 52]

Svmbol Logical Predicted Result
ymbals Consequence 222D
(Images) of Model Observed Result

(Pragmatics)

{Semantics

Physical Laws

Figure 1: The Modeling Relation between knowledge and reality according to Hertz
(adapted from Cariani, 1989)

“In 1894 Heinrich Hertz published his Principles of Mechanics which attempted [...] to purge mechanics of
metaphysical, mystical, undefined, unmeasured entities such as force and to base the theory explicitly on
measurable quantities. Hertz wanted to be as clear, rigorous, and concise as possible, so that implicit, and
perhaps unnecessary, concepts could be eliminated from physical theories, [which he thought should be based
solely on measurable quantities].” [Cariani, 1989, page 54]. Since the results of measurements are symbols,
physical theory should be about building relationships among observationally-derived symbols, that is, it
should be about building formal models, which Hertz called "images™:

“The most direct and in a sense the most important, problem which our conscious knowledge of
nature should enable us to solve is the anticipation of future events, so that we may arrange our
present affairs in accordance with such anticipation. As a basis for the solution of this problem we
always make use of our knowledge of events which have already occurred, obtained by chance
observation or by prearranged experiment. In endeavoring thus to draw inferences as to the future
from the past, we always adopt the following process. We form for ourselves images or symbols of
external objects; and the form which we give them is such that the necessary consequents of the
images in thought are always the images of the necessary consequents in nature of the things pictured.
In order that this requirement may be satisfied, there must be a certain conformity between nature and
our thought. Experience teaches us that the requirement can be satisfied, and hence that such a
conformity does in fact exist. When from our accumulated experiences we have succeeded in
deducing images of the desired nature, we can then in a short time develop by means of them, as by
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means of models, the consequences in the external world which only arise in a comparatively long
time, or as a result of our own interposition. We are thus enabled to be in advance of the facts, and to
decide as to present affairs in accordance with the insight so obtained. The images which we here
speak are of our conceptions of things. With the things themselves they are in conformity in one
important respect, namely, in satisfying the above mentioned requirement. For our purpose it is not
necessary that they should be in conformity with the things in any other respect whatever. As a matter
of fact, we do not know, nor do we have any means of knowing, whether our conceptions of things
are in conformity with them in any other than the one fundamental respect. [Hertz, 1894 pp. 1-2]”

A model is any complete and consistent set of verbal arguments, mathematical equations or computational
rules which is thought to correspond to some other entity, its prototype. The prototype can be a physical,
biological, social psychological or other conceptual entity.

The etymological roots of the word model lead us to the Latin word “modulus”, which refers to the act of
molding, and the Latin word “modus” (a measure) which implies a change of scale in the representation of
an entity. The idea of a change of scale, can be interpreted in different ways. As the prototype of a physical,
social or natural object, a model represents a change on the scale of abstraction: certain particularities have
been removed and simplifications are made to derive a model.

In the natural sciences, models are used as tools for dealing with reality. They are caricatures of the real
system specifically build to answer questions about it. By capturing a small number of key elements and
leaving out numerous details, models help us to gain a better understanding of reality and the design
principles it entails.

Computational Models®

“Insofar as the propositions of mathematics are certain they do not refer to reality; and insofar as
they refer to reality, they are not certain”. Albert Einstein

Computation is the ultimate abstraction of a formal mathematical system, or an axiomatic system. It is defined
by the purely syntactic process of mapping symbols to symbols. Such mapping is the basis of the concept of
mathematical function, and it is all that computers do. This abstraction requires that all the procedures to
manipulate symbols are defined by unambiguous rules that do not depend on physical implementation, space,
time, energy considerations or semantic interpretations given to symbols by observers. Formal computation
is, by definition, implementation-independent.

Modeling, however, is not entirely a formal process. The Hertzian modeling paradigm clearly relates formal,
computational models to measurements of reality against which they must be validated. The measuring
process transforms a physical interaction into a symbol — via a measuring device. The measuring process
cannot be formalized as it ultimately depends on interacting with a specific (not implementation-independent)
portion of reality. We can simulate a measurement process, but for that simulation to be a model we will need
in turn to relate it to reality via another measurement. This important aspect of modeling is often forgotten
in Artificial Life, when the results of simulations are interpreted without access to real world measurements.

? This section is indebted to many writings of Howard Pattee, including lecture notes and personal communications.
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Likewise, a computer is a physical device that implements a particular abstract computational model as
precisely as possible. Modern day computers are so successful because they can implement general-purpose
computations almost independently of their specific physics. We do not have to worry about the specific
physical architecture of the device as we compute, even though small errors in our computations do occur due
to the physical elements of the computing device.

In summary, a computation is a process of rewriting symbol strings in a formal system according to a program
of rules. The following characteristics are important: (1) Operations and states are syntactic. (2) Symbols
follow syntactical rules. (3) Rate of computation is irrelevant. (4)Program determines result, not speed of
machine (Physical implementation is irrelevant).
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4. Self-Organization and Emergent Complex Behavior

Self-organization is usually understood as the process by which systems of many components tend to reach
a particular state, a set of cycling states, or a small volume of their state space (attractor basins), with no
external interference. This attractor behavior is often recognized at a different level of observation as the
spontaneous formation of well-organized structures, patterns, or behaviors, from random initial conditions
(emergent behavior). The systems used to study this behavior are referred to as dynamical systems or state-
determined systems, since every trajectory is perfectly determined by its initial state. Dynamical systems are
traditionally studied by continuous variables and sets of discrete-time difference equations (such as the
logistic map) or continuous-time differential equations (such as models of the motion of bodies under
gravitational forces). However, self-organization is more easily studied computationally with discrete
dynamical systems (DDS) such as Boolean networks or cellular automata.

The state-determined transition rules of DDS are interpreted as the laws of some physical system [Langton,
1986] where the state of each component depends on the states of its neighbor (or related) components at the
previous time instance. DDS possess a large number of components or variables, and thus very large state
spaces. However, when started with random initial conditions (note: not from special initial conditions) they
tend to converge, or self-organize, into small sets of attractor states in this space. Attractors may be chaotic
in which case the emergent behavior is sensitive to initial conditions. But even chaotic attractors tend to be
restricted to small volumes of their state-space (e.g. chaotic in a subset of dimensions of the state-space),
therefore we still consider the convergence of a dynamical system into a chaotic basin of attraction to be a
form of self-organization.

Since material systems are accurately modeled by dynamical systems, it follows from the observed attractor
behavior [Wuensche and Lesser, 1992] of these systems that there is a propensity for matter to self-organize
(e.g., [Kauffmann, 1992]). In this sense, matter is described by the (micro-level) dynamics of state transitions
and the observed (emergent or macro-level) attractor behavior of self-organization. In general, attractors
manifest or emerge as global patterns that involve many of components of the dynamical system, and are not
easily describable in terms of their state-determined transition rules. For instance, the simple transition rules
of the automata in Conway's Game of Life cannot describe what the emergent patterns of "blinkers" and
"gliders" are. These emergent patterns pertain to a different, complementary level of observation of the same
system [Pattee, 1978]. The process of self-organization is often interpreted as the evolution of order from
random initial conditions. However, notice that this evolution is limited to the specific attractor landscape of
a given dynamical system. Unless its parameters are changed (structural perturbation), no dynamical system
can escape its own attractor landscape. This limitation will become more apparent when we approach the
problem of self-replication.

Life on the Edge of Chaos?

Another interesting aspect of the behavior of dynamical systems concerns the concept of bifurcation or phase
transition. When the parameters of a dynamic system are changed gradually its trajectories and attractors
typically change gradually, however, for certain parameter values sudden changes in the dynamic behavior
can occur. It is at this critical point that complicated spatio-temporal organization may occur (e.g. from a
steady-state to a limit cycle attractor). Close to bifurcations the system also becomes increasingly more
sensitive to parameter and initial condition changes. It is often proposed that bifurcations offer a selection
mechanism [Prigogine, 1985], as a dynamical system may respond very differently to very small changes in
their parameters.
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However, if the parameter space is divided by many bifurcations, the system becomes increasingly sensitive
to initial conditions and small parameter changes; in this sense its behavior becomes chaotic. It has been
argued that the most useful behavior lies instead in between full order and chaos. Langton [1990, 1992] has
shown (for one-dimensional cellular automata) that it is in this range of behavior that dynamical systems can
carry the most complicated “computations”. Computation here is used in a loose sense—not as the rate-
independent, symbolic manipulation of Turing-machines—meaning that information exchange between
elements of these systems is maximized in this range. In other words, Langton showed that the highest
correlation among the automata in a cellular lattice occur at this stage.

Kauffman [1993,] likewise hypothesized that “living systems exist in the [ordered] regime near the edge of
chaos, and natural selection achieves and sustains such a poised state”. This hypothesis is based on Packard’s
[1988] work showing that when natural selection algorithms are applied to dynamical systems, with the goal
of achieving higher discriminative power, the parameters are changed generally to lead these systems into
this transitional area between order and chaos. This idea is very intuitive, since chaotic dynamical systems
are too sensitive to parameter changes, that is, a single perturbation or mutation (structural perturbation) leads
the system into another completely different behavior (sensitive to damage). By contrast, ordered systems are
more resilient to damage, and a small parameter change will usually result in a small behavior change which
is ideal for smooth adaptation. However, even though very ordered systems can adapt by accumulation of
useful successful variations (because damage does not propagate widely), they may not be able ‘step out’ of
their particular organization in the presence of novel demands in their environment.

It is here that systems at the edge of chaos were thought to enter the scene; they are not as sensitive to damage
as chaotic systems, but still they are more sensitive than fully ordered systems. Thus, most mutations cause
only minor structural changes and can accumulate, while a few others may cause major changes in the
dynamics enabling a few dramatic changes in behavior. These characteristics of simultaneous mutation
buffering (to small changes) and dramatic alteration of behavior (in response to larger changes) is ideal for
evolvability [Conrad, 1983, 1990]. However, many of the real gene networks that have been successfully
modeled with dynamical systems (e.g. the network of segment polarity genes in Drosophila melanogaster
[Albert and Othmer, 2003]), exist in a very ordered regime, being very robust to structural changes [Chaves,
Albert and Sontag, 2005; Willadsen&Wiles, 2007; kauffman et al, 2003]. Still, other genetic regulatory
network models do operate close to criticality [Balleza et al, 2008]. It appears that evolution favors ordered,
very robust regimes of self-organization in gene networks — at least the ones involved in very conserved
regulatory pathways — though there is also evidence of near-critical regimes for increased evolvability.

Complex Self-organization

We have studied several computational systems said to be self-organizing in the sense described above. The
discrete logistic equation observes several ranges of ordered behavior according to its parameter r. For r <
3, the system converges to a single point steady state (independently of its initial value). For 3 < r < 4 the
system enters a series of bifurcations, meaning that it changes its attractor behavior, first from a steady-state
into a two-state limit cycle, and then progressively doubling the number of states in an attractor limit cycle
as r increases. Close to r = 4, the limit cycle becomes chaotic. That is, in the chaotic range, the slightest
change in the initial value, will lead to a completely different trajectory (though similarly chaotic). The
system goes from being independent to strongly dependent of initial conditions, though, in each range, the
attractor behavior of the equation is the same for random initial conditions. Thus, we can see the logistic
equation as self-organizing.
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But there is another aspect of the logistic equation that should be understood. In all of its ranges of behavior,
from full order to full chaos, the system is (fairly) reversible. That is, I can always obtain a specific initial
condition which caused some behavior, by formally running the system backwards. This means the system
is deterministic in both temporal directions. Formally, this means the state transition function is invertible.
(This is actually only true, if we decide to work on the lower half of its state space, since the logistic equation
is a quadratic function, it has always two possible solutions for the previous value of the current state, these
values are symmetric about the middle point of its state space). Some, resist calling this kind of reversible
systems self-organizing because they are not sufficiently complex. They reason that if a system is self-
organizing, when ran backwards it should be self-disorganizing, that is, it should lead to random initial
conditions, or to an incomplete knowledge of possible initial states. Indeed, complexity is typically equated
with the inability to describe the behavior of a system from the behavior of its components or predecessors.
This way, we ought to reserve the term self-organization to those irreversible systems whose behaviors must
be evaluated statistically. The logistic map shows “hints” of this backwards self-disorganization, but we can
still work out effectively its backwards trajectory to an initial condition by restricting the quadratic solutions
to half of its state space.

Random Boolean Networks are much more complicated than this. They are completely deterministic since
a certain state will always lead to the same next state (state-determinacy), however, we cannot usually know
exactly what the predecessor of a current state was. Systems like this are usually studied with statistical tools.
Even though the rules that dictate the next state of its components are simple and deterministic, the overall
behavior of the system is generally too complicated to predict and statistical analysis has to be performed.
For instance, Kauffman has shown that when K=2 (number of inputs to each node), his networks will have
on average /N basins of attraction with a length of /N states; if the output of one node is switched to the
other boolean value (perturbation), the trajectory returns to that cycle 85% of the time, while on the remaining
15% of the time it will “jump” into a different basin of attraction. Cellular automata (CA) fall into this same
category of deterministic, irreversible, self-organization.
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5. Reality is Stranger than Fiction

Updated from a presentation in the “Biocomplexity” discussion section at the 9" European Conference on
Artificial Life, September 12, 2007 in Lisbon, Portugal

What can Artificial Life do about Advances in Biology?

“By extending the empirical foundation upon which biology is based beyond the carbon-chain life
that has evolved on Earth, Artificial Life can contribute to theoretical biology by locating life-as-we-
know-it within the larger picture of life-as-it-could-be”. [Langton, 1998, page 1]

From Langton’s original artificial life manifesto, the field was largely expected to free us from the confines
of “life-as-we-know-it” and its specific biochemistry. The idea of “life-as-it-could-be” gave us a scientific
methodology to consider and study the general principles of life at large. The main assumption of the field
was that instead of focusing on the carbon-based, living organization, life could be better explained by
synthesizing its “logical forms” from simple machines [Langton, 1989, page 11]—where, “fictional”
machines substituted real biochemistry. The expectation was that this “out-of-the-box”, synthetic
methodology would gain us a wider scientific understanding of life. We would be able to entertain alternative
scenarios for life, challenge the dogmas of biology, and ultimately discover the design principles of life.

Interestingly, during the 20 years since the first artificial life workshop, biology witnessed tremendous
advances in our understanding of life. True, biology operates at a completely different scale of funding and
in a much larger community base than artificial life (the impact factors of key journals in both fields differ
by an order of magnitude). But, still, it is from biology, not artificial life, that the strangest and most exciting
discoveries and design principles of life arise today. Consider looking at the [September 6, 2007] number of
Nature, with the quite apropos editorial title “Life as We Know it” [Vol. 449, 1], arguing for a comparative
genomics approach, with articles, for instance, moving towards evolutionary principles of gene duplication
[Wapinski et al, 2007]. Publications in the [September 2007 issue of] PL0S. Biol., also presented new
evidence towards updating or discovering general principles of life: for instance, Venter’s sequencing of his
diploid genome, which updates our expectations of differences in chromosome pairs [Levy et al, 2007]), and
the Ahituv et al [2007] study that challenges the idea that utraconserved DNA (across species) must be
functional. Since then, many advances, often enabled by big data approaches of computational biology, keep
being discovered; for instance, from large-scale comparative genomics, it has been found that retroviral
genomic sequences account for 6 to 14% of host genomes—~8% of human DNA is from endogenous
retroviruses, which comprises more DNA than the human proteome [Weiss & Stoye, 2013].

It is good to notice that this sort of work is not so much an exception, but has been a signature of research in
the biosciences in the last couple of decades. Consider cases such as the discovery of DNA transfer from
bacteria to the fly [Dunning Hotopp, 2007], extra-genomic inheritance in Arabidopsis [Lolle et al, 2005], or
the profound importance of non-coding RNA in life which is a major player in, among other features,
patterning [Martello et al, 2007] , essential gene regulation [Mattick, 2005], development [Mattick, 2007],
epigenetic neural development and modulation [Mehler & Mattick, 2007; Mattick & Mehler, 2008],
eukariotic complexity [Taft et al, 2007], etc. Moreover, advances such as these do not seem to be mere
epiphenomena of a specific life form. Indeed, they point at important organization principles—as those that
artificial life was supposed to provide. When we discover that non-transcribed RNA is involved in extra-
genomic inheritance or that most of the evolutionary innovation responsible for differences between
marsupials and placental mammals occurs in non-protein coding DNA [Mikkelsen et al, 2007], some
fundamental principles of the living organization are to be re-thought: the simple, generalized genotype-
phenotype mappings on which most of artificial life is based on, are just not enough to capture the principles



of life as we know it. More intricate genomic structure, and its principles, need to be modeled and theories
need to be built to understand life.

One could go on and on about many other advances in biology. We can also point to themes at the forefront
of (bio)complexity theory that go largely overlooked in artificial life—though not completely (i.e. [Calabretta
et al, 2000; Hintze & Adami, 2007]). Perhaps the key topic in complexity theory today is that of modularity
in evolution [Schlosser & Wagner, 2004 ] and in networks [Newman, 2006; Guimera et al 2007].
Nonetheless, looking at the papers accepted for the main sections of the latest Alife and ECAL conferences,
it is easy to see that most papers, not only do not discover or even address such issues, but largely trade in
biological and computational concepts that have not changed much since the field’s inception (see list of top
themes and terms in appendix). Is artificial life trapped in the (evolutionary) biology of twenty years ago?
Why is reality stranger and more surprising than fiction?

Clearly, there has been very widely successful artificial life research. First and foremost, artificial life has
been most successful as a means to study animal behavior, learning and cognition. Certainly, evolutionary
robotics and embodied cognition have had an impact in cognitive science. But is artificial life simply a better
way to do artificial intelligence? Moreover, one could argue that given the embodied nature of evolutionary
robotics, it would seem that it is bound to some kind of material reality, rather than synthesized by constituent
“logical forms” as Langton initially suggested.

But what to do about the organization of life itself? Surely the idea of explaining the living organization was
behind the origin of the field. For the purposes of this discussion, we must question ourselves why artificial
life does not produce more and surprising results about the living organization? Certainly, there is sound
research in the field with impact outside of it [e.g. Adami, 2006; Hintze & Adami, 2007]. But even the most
successful research in artificial life rarely goes beyond showing that artificial organisms can observe the same
behaviors as their real counterparts (i.e. selective pressures, epistasis, etc.). A problem for the field is that
as biotechnology gains more and more control of cellular processes, it is reasonable to ask what can one do
with artificial organisms that one cannot do with real bacteria? For instance, recent studies of the evolutionary
speed towards beneficial mutations were quite effectively done with E-coli [Perfeito et al, 2007], pointing
to a much larger rate of beneficial mutations in bacteria than previously thought, and shedding new light on
the general principal of clonal interference.

The point of this short statement is to discuss at this conference [ECAL 2007], how biocomplexity is dealt
within artificial life, twenty years after the field’s inception. Certainly the community can think of a variety
of responses to this lack of new principles of life coming out of research in artificial life—even in theoretical
biology. One concept that I venture may need updating in artificial life is its view of the genotype/phenotype
relationship. Langton proposed that we generalize this relationship, but this meant that research in the field
largely regarded the two as indistinguishable. While this move at fist glance seems appropriate to deal with
the complexity of genomic-proteomic interaction, it prevents us from studying the specific roles each plays
in the living organization. Genotype and phenotype are intertwined in a complex manner, but each operates
under different principles that are often overlooked in artificial life. Thus, artificial life rarely approaches
issues of genomic structure and regulation, or the co-existence of DNA and RNA as different types of
informational carriers. This could well be because artificial life models seem to trade most often on the
concept of Mendelian gene than on the molecular biology gene. In other words, artificial life models tend to
regard genes solely as mechanisms of generational (vertical) inheritance, rather than as (informational)
mechanisms of ontogenetic (horizontal) development, regulation, maintenance, phenotypic plasticity, and
response to environmental change. This way, most artificial life models do not test, or even deal with,
possible genomic structure architectures and their impact on development and evolution. This is a big
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shortcoming in the field since, as we have seen in the last two decades, the molecular biology gene and the
genomic structure it implies are behind many essential principles of life—from hypersomatic mutation in
vertebrate immunity to speciation.

Additionally, it is most often the case that artificial organisms in artificial life models are designed with many
top-down features, rather than emerging out of artificial biochemical machines. For instance, typically the
genes of artificial organisms encode pre-defined computer operations. Not only is the encoding pre-defined,
but the function of individual genes is also pre-programmed, rather than emergent from some artificial
chemistry—what is typically emergent is the behavior of a collection of such “atomic” genes and genotypes.

It is interesting to note that when biologists were looking for the location of genetic information for
inheritance, they naturally assumed that it would reside in proteins. They knew of DNA chemically, but its
sheer inertness deemed it unfit for the job. It took some time to realize that relative inertness was really the
point--- from Griffith’s experiment in 1928 to Avery’s in 1944, the implications of which were only fully
accepted much later , probably costing Avery a deserved Nobel [Judson, 2003]. This episode illustrates how
reality very often surprises the best scientific expectations of the day—a big problem for Artificial Life, as
long as it defines itself as the study of life-as-it-could-be, since it implies a science built on what scientists
think life is and not on what experiments show it is. For instance, the biochemical difference between highly
inert memory molecules and highly reactive, functional ones, while often overlooked in artificial life as a
design principle, is ultimately the hallmark of life [Rocha and Hordijk, 2005; Brenner, 2012]. Indeed,
Venter’s achievement in successfully replicating a living cell with a “prosthetic genome” until the original
organism’s phenotype is fully re-programmed (see chapter 1), should lead Artificial Life scientists to ponder
at least the question of what is it about life’s design principle that makes it easier to synthesize a working
prosthetic genome than a working “prosthetic” proteome or metabolome? Perhaps, Langton’s view of
artificial life being built-up from simple machines, may have clouded the fact that life as we know it is made
of biochemical constituents with very different chemical and functional roles: chiefly, DNA (long-term,
random-access memory), RNA (short-term memory and symbol processing) and proteins (functional
machines). Perhaps more attention should be directed to the “logical forms” of these lower level, structural
constituents that produce life, before we can tackle “life-as-it-could-be”.
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APPENDIX:

Top themes extracted from all abstracts accepted to ECAL 2007, produced the
Leximancer (courtesy of Janet Wiles)

o pt AbsoluteRelative

Count Count
model 119 100%
system 95 79.8%
evolution 92 T73%
results 64 53.7%
environment 58 48.7%
behavior 57 47.8%
present 37 478%
networlc 36 47%
robot 35 46.2%
agents 52 43.6%
simulation 50 42%
process 49 41.1%
simple 46 38.46%
show 43 36.1%
mechanism 41 34 4%
complex 41 34 4%
dvnamics 39 32.7%
artificial 39 32.7%
problem 39 32.7%
based 36 30.2%
learning 36 30.2%
approach 33 27.7%
population 31 26%
study 31 26%
genetic 30 252%
individual 30 252%
neural 28 23.5%
selection 28 23.5%
organisms 27 22.6%
method 26 218%
conditions 26 21.8%
level 26 21.8%
information 25 21%
social 25 21%
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Top Themes produced from Leximancer set at 65% coverage themes (courtesy of Janet
Wiles)

Kerations=-1000

Top co-occurring (stemmed) word pairs in abstracts

neural--network
chang--environ
artifici--life
simul--result
autonom--robot
evolutionari--algorithm
evolutionari--robot
comput--simul
genet--algorithm
robot--mobil
cellular--automata
interact--between
artifici--chemistri
agent--adapt
pressur--select
neural--control
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6. Von Neumann and Natural Selection

“Turing invented the stored-program computer, and von Neumann showed that the description is
separate from the universal constructor. This is not trivial. Physicist Erwin Schrodinger confused the
program and the constructor in his 1944 book What is Life?, in which he saw chromosomes as
“architect's plan and builder's craft in one”. This is wrong. The code script contains only a description
of the executive function, not the function itself.” [Brenner, 2012]

6.1 Von Neumann’s Self-Reproduction Scheme

Von Neumann thought of his logical model of self-

. ‘ 1.\Z\) reproduction as an answer to the observation that,
P(A,B.C) \ W‘%\ ; unlike machines, biological organisms have the

™

their complexity without limit. Mechanical
artefacts are instead produced via more
complicated factories (as opposed to self-

C ability to self-replicate while seemingly increasing

() B.C) production) and can only degenerate in their

D(A.B,C) B g complexity. He was searching for a complexity

D(A,B,C) B threshold beyond which systems may self-

BABC) A C C reproduce (with no outside control) while possibly
Y increasing their complexity.

M\A

B 7 >, Von Neumann concluded that this threshold entails
s

a memory-stored description ®(X) that can be
interpreted by a universal constructor automaton
A to produce any automaton X; if a description of
A, O(A), is fed to A itself, then a new copy of A is
obtained. However, to avoid a logical paradox of self-reference, the description, which cannot describe itself,
must be both copied (uninterpreted role) and translated (interpreted role) into the described automaton. This
way, in addition to the universal constructor, an automaton B capable of copying any description, ®(X), is
included in the self-replication scheme. A third automaton C is also included to perform all the manipulation
of descriptions necessary—a sort of operating system. To sum it up, the self-replicating system contains the
set of automata (A + B + C) and a description ®(A + B + C); the description is fed to B which copies it three
times (assuming destruction of the original); one of these copies is then fed to A which produces another
automaton (A + B + C); the second copy is then handled separately to the new automaton which together with
this description is also able to self-reproduce; the third copy is kept so that the self-reproducing capability
may be maintained (it is also assumed that A destroys utilized descriptions). Notice that the description, or
program, is used in two different ways: it is both translated and copied. In the first role, it controls the
construction of an automaton by causing a sequence of activities (active role of description). In the second
role, it is simply copied (passive role of description). In other words, the interpreted description controls
construction, and the uninterpreted description is copied separately, passing along its stored information
(memory) to the next generation. This parallels the horizontal and vertical transmission of genetic
information in biological organisms, which is all the more remarkable since Von Neumann proposed this
scheme before the structure of the DNA molecule was uncovered by Watson and Crick[1953]—though after
the Avery-MacLeod-McCarty [1944] experiment which identified DNA has the carrier of genetic
information.
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“The concept of the gene as a symbolic representation of the organism—a code script—is a funda-
mental feature of the living world and must form the kernel of biological theory.” [Brenner, 2012]

The notion of description-based self-reproduction implies a language. A description must be cast on some
symbol system while it must also be implemented by some physical or a logical structure. When A interprets
a description to construct some automaton, a Semantic code is utilized to map instructions into construction
commands to be performed. When B copies a description, only its syntactic aspects are replicated. Now, the
language of this semantic code presupposes a set of primitives (e.g. parts and processes) for which the
instructions are said to “stand for”. Descriptions are not universal insofar as they refer to these building blocks
which cannot be changed without altering the significance of the descriptions. The building blocks ultimately
produce the dynamics, behavior, and/or functionality of the overall system, and may be material or
computational. In Biology, we can think of the genetic code as instantiating such a language. Genes are
descriptions that encode specific parts: amino acids chains. In a computational setting, parts are typically
logical operations, but they can also be, for example, the building blocks of neural networks coded by genetic
algorithms and L-Systems. Von Neumann [1966] (posthumously aided by Arthur Burks) produced a
specification of a universal constructor using a 29-state cellular automaton. Implementations of this
automaton appeared only fairly recently [e.g. Pesavento, 1995, see Sipper, 1998]

6.2 Open-ended evolution and natural selection

“Biologists ask only three questions of a living organism: how does it work? How is it built? And
how did it get that way? They are problems embodied in the classical fields of physiology,
embryology and evolution. And at the core of everything are the tapes containing the descriptions
to build these special Turing machines.” [Brenner, 2012]

Perhaps the most important consequence of separate descriptions in Von Neumann’s self-reproduction
scheme (and Turing’s Tape) is its opening the possibility for open-ended evolution [Rocha, 1998; McMullin,
2000]. As Von Neumann [1966] discussed, if the description of the self-reproducing automata is changed
(mutated), in a way as to not affect the basic functioning of (A + B + C) then, the new automaton (A+B +
C)" will be slightly different from its parent. Von Neumann used a new automaton D to be included in the
self-replicating organism, whose function does not disturb the basic performance of (A + B + C); if there is
a mutation in the D part of the description, say D’, then the system (A+B+C+D)+®A+B+C+D")
will produce (A+B+C+ D")+ ®(A+ B+ C+ D). Von Neumann [1966, page 86] further proposed that
non-trivial self-reproduction should include this “ability to undergo inheritable mutations as well as the ability
to make another organism like the original”, to distinguish it from “naive” self-reproduction like growing
crystals.

Notice that changes in (A + B + C + D) are not heritable, only changes in the description, ®(A + B + C + D),
are inherited by the automaton’s offspring and are thus relevant for evolution. This ability to transmit
mutations (vertically) is precisely at the core of the principle of natural selection of modern Darwinism.
Through variation (mutation) populations of different organisms are produced; the statistical bias these
mutations impose on reproduction rates of organisms will create survival differentials (fitness) on the
population which define natural selection. In principle, if the language of description is rich enough, an
endless variety of organisms can be evolved: open-ended evolution.

The evolvability of a self-reproducing system is dependent on the parts used by the semantic code. If the parts

are very simple, then the descriptions will have to be very complicated, whereas if the parts possess rich
dynamic properties, the descriptions can be simpler since they will take for granted a lot of the dynamics that
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otherwise would have to be specified. In the genetic system, genes do not have to specify the functional
characteristics of the proteins produced, but simply the string of amino acids that will produce that
functionality “for free” [Moreno et al, 1994]. Furthermore, there is a trade-off between programmability and
evolvability [Conrad, 1983, 1990] which grants some self-reproducing systems no evolutionary potential
whatsoever. When descriptions require high programmability they will be very sensitive to damage. Low
programmability grants self-reproducing systems the ability to change without destroying their own
organization, though it also reduces the space of possible evolvable configurations [Rocha, 2001].

Turing and Von Neumann were the first to correctly formalize the required inheritance mechanism behind
neo-Darwinian evolution by Natural Selection. This understanding of the most fundamental design principle
of life, puts Turing and Von Neumann on the Parthenon of great thinkers in Biology, alongside Darwin and
Mendel. The dovetailing of computational thinking and biology, inherent in the cybernetics movement of
Turing, Von Neumann, Shannon, Wiener and others, emphasizes how (material) control of symbolic
information is the hallmark of both computation and biocomplexity.
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7. Modeling Evolution: Evolutionary Computation

“How does evolution produce increasingly fit organisms in environments which are highly uncertain for
individual organisms? How does an organism use its experience to modify its behavior in beneficial ways (i.e.
how does it learn or ‘adapt under sensory guidance’)? How can computers be programmed so that problem-
solving capabilities are built up by specifying ‘what is to be done’ rather than ‘how to do it’?” [Holland, 1975,

page 1]

These were some of the questions concerning John Holland when he thought of Genetic Algorithms (GA’s)
in the 1960's. All these questions were shown to be reducible to a problem of optimizing multi-parameter
functions. Nature’s “problem” is to create organisms that reproduce more (are more fit) in a particular
environment: the environment-organism coupling dictates the selective pressures, and the solutions to these
pressures are organisms themselves. In the language of optimization, the solutions to a particular problem
(say, an engineering problem), will be selected according to how well they solve that problem. GA’s are
inspired by natural selection as the solutions to our problem are not algebraically calculated, but rather found
by a population of solution alternatives which is altered in each time step of the algorithm in order to increase
the probability of having better solutions in the population. In other words, GA’s, or other Evolutionary
Strategies (ES) such as Evolutionary Programming (EP), explore the multi-parameter space of solution
alternatives for a particular problem, by means of a population of encoded strings (standing for alternatives)
which undergo variation (crossover and mutation) and are reproduced in a way as to lead the population to
ever more promising regions of this search space (selection) [Goldeberg, 1989; Mitchell, 1999; De Jong,
2006].

7.1 Evolutionary Strategies and Self-Organization

The underlying idea of computational ES is the separation of solutions for a particular problem (e.g. a
machine) from descriptions of those solutions (memory). GA’s work on these descriptions and not on the
solutions themselves, that is, variation is applied to descriptions, while the respective solutions are evaluated,
and the whole (description-solution) selected according to this evaluation. Such machine/description
separation follows von Neumann’s self-reproducing scheme (see chapter 6) which is able to increase the
complexity of the (organization of) machines described. Therefore, the form of organization evolved by GA’s
is not self-organizing in the sense of a boolean network or cellular automata (see chapter 4). Even though the
solutions are obtained from the interaction of a population of elements, and in this sense following the general
rules usually observed by computationally emergent systems (e.g. Langton [1988], Mitchell [1992]), they
do not self-organize since they rely on the selective pressures of some environment (in ES, defined by an
explicit or implicit fitness function). The order so attained is not a result of the internal dynamics of a
collection of interacting elements, but is instead dictated by the external selection criteria. In this sense, ES
follow an organizing scheme that is driven by external selection of encoded symbolic descriptions (a “Turing
tape” ). It is perhaps useful to think that ES are modeling the most fundamental design principle of biological
systems: natural selection. While self-organizing systems model the dynamical characteristics of matter, ES
model the existence of, external, selective pressures on populations of symbolic descriptions of some system.
While self-organization models material dynamics, ES models the selection of information about dynamics.

7.2 Development and morphogenesis: self-organization and selection come together
Since the original introduction of GA’s, many subsequent developments had to do with the inclusion of a

developmental stage, or intermediate layers between genotype and phenotype; in other words, the creation
of some artificial morphogenesis or regulation. The idea has been to encode rules that will themselves self-
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organize to produce a phenotype, rather than the direct encoding of the phenotype itself, or the introduction
of gene regulation . As discussed in class, these rules often use L-System grammars which dictate production
system programs [Wilson, 1988] leading to some phenotype. The most important advantage of this
intermediate stage, as explored by Kitano [1990], Gruau [1993], Belew [1992] and others, is the ability to
code for much larger structures than a direct encoding allows. In practical terms, they have solved some of
the scalability problems of encoding (e.g.) neural networks in GA’s, by reducing the search space
dramatically.

L-system grammars are higher-level descriptions of self-organizing developmental processes. However, these
first approaches used solely context-free, state-determined, L-System grammars, compromising epistasis (or
mutual, non-linear, influence of genetic descriptions amongst each other) in the simulation of self-organizing
development. Dellaert and Beer [1994] and Kitano [1994], for instance, used Boolean networks to simulate
genetic epistasis and self-organization. In other words, the GA encodes rules which construct Boolean
networks whose nodes stand for aspects of the phenotypes we wish to evolve on some physical simulation.
In Dellaert and Beer’s model, the nodes stand for cell mitosis and other characteristics. This way, the
solutions of the GA are self-organizing systems whose attractor behavior dictates pre-defined phenotypic
traits.

These approaches in effect offer an emergent morphology, that is, they encode rules which will themselves
self-organize into some phenotype (instead of strict programming of morphology). The indirect encoding
further allows the search to occur in a reduced space, amplified through development. An interesting side
effect has to do with the appearance of modularity traits on the evolved phenotypes [Wagner, 1995].
Subsequent developments paid even more attention to the contextual regulation that indirect encodings afford
to the search [Rocha 1995, 1997]. More recently, given our expanded view of genomics, other intermediate
layers between genotype and phenotype have been explored, such as transcription regulation [Reil, 1999;
Hallinan & Wiles, 2004] and RNA Editing [Rocha etal, 2006]. The inclusion of more sophisticated regulation
of genetic information prior to translation, while not necessarily including a self-organizing component,
allows us to model a much more realistic genotype/phenotype/environment interaction. Instead of genotypes
used exclusively for Mendelian inheritance (see chapter 5) of (directly encoded) phenotypic traits, ES with
genotype regulation allow us to model the contextual, plastic development of phenotypes we have come to
understand via modern Genomics—thus also learning additional design principles for bio-inspired
computation [Huang et al, 2007].

The most important aspect of GA’s with emergent morphologies is the utilization in the same model of an
external selection engine (the GA) coupled to a particular self-organizing dynamics (e.g. Boolean networks)
standing for some materiality. Such schemes bring together, computationally, the two most important aspects
of evolutionary systems: self-organization and selection. These models belong to a category of self-
organization referred to as Selected Self-Organization which is based on symbolic memory [Rocha, 1996,
1997, 1998]. Selected Self-Organization with distributed memory is also possible in autocatalytic structures,
though its evolutionary potential is much smaller than the local memory kind [Rocha, 2001][Vasas, 2010].
The reason lies in Von Neumann’s notion of self-reproduction (see chapter 6). The introduction of symbolic
descriptions allows a much more sophisticated form of communication: structures are constructed from static
descriptions and do not have to reproduce through some complicated, and limited process of self-inspection.
In other words, separate descriptions can be used to reliably construct any kind of structure in an open-ended
manner, while self-inspection relies on only those structures that happen to be able to make copies of
themselves. As an example, a non-genetic protein-based life form, would have to rely only on those proteins
that could make direct copies of themselves [Rocha, 2001].
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Abstract possible in a fixed amount of time. For a search space
Researchers in many fields are faced Withwith only a small number of possible solutions, all the

: . ; lutions can xamined in a reasonable amount of
computational problems in which a great number ofolutions ca be examined in a reasonable amount o

solutions are possible and finding an optimal or even %emaercr?nr?ovt/t\a/e?pumil Onbeecf(?rﬂre]g' imTrhanf[ir::aalIJS;;/ethe
sufficiently good one is difficult. A variety of search » y P

techniques have been developed for exploring sucﬁeamh space grows in size.  Traditional search

problem spaces, and a promising approach has been tﬁle Orrlstth(r:];‘cl'l rzgfnorgy(esar?gﬁeg?'gggg:ﬁh\gaslza?éh
use of algorithms based upon the principles of naturasl ;cle Ioneysol t'gn at ég?mel'n the hopes of findina the
evolution.  This tutorial will introduce the basic P Ut ime 1 P inding

principles underlying most evolutionary algorithms, asoptlmal solution. ~ The key aspect distinguishing an

. lutionary search algorithm from such traditional
well as some of the key details of the four most popula‘?vO . ) o .
methods: genetic algorithms, genetic programmingalgonthms is that it igpopulation-based Through the

evolutionary strategies, and evolutionary programmingadaptat'on of successive generations of a large number

The aim of the tutorial is to introduce the participants to°f individuals, an evolutionary algorithm performs an

the jargon and principles of the field of evolutionaryemc'em directed search.  Evolutionary sear_ch IS
computation, and to encourage the participants tgenerall_y better thgn _ran.dom sea_rch and IS not
consider the potential of applying evolutionary susceptible to the hill-climbing behaviors of gradient-
optimization techniques in their own research. based search.

2. Basic Evolutionary Computation

An important area in current research is the In an evolutionary - algorithm, - aepresentation

development and application of search techniques basésghemes chosen by the researcher to define the set of

upon the principles of natural evolution. Most readers,SOIUtlons that form the search space for the algorithm.

through the popular literature and typical Western A-n-umber of |nd|V|duaI solu'uons.are created to form an
Eltla| population  The following steps are then

educational experience, are probably aware of the bas1re eated iteratively until a solution has been found
concepts of evolution. In particular, the principle of the rﬁ)'ch satisfies ay re-definetermination  criterion
‘survival of the fittestproposed by Charles Darwin whl ISt P ' inatl erion

; : L h individual is evaluated usinditaess functiorthat
1859) has especially captured the popular ima maﬂorFaC e ;
sNe s?1a|| usepthis zs ap starting plz)irr:t in intrc?ducin S specific to the problem being solved. Based upon

- . gtheir fitness values, a number of individuals are chosen
evolutionary computation.

The theory of natural selection proposes that thd® be parents New individuals, oroffspring are

plants and animals that exist today are the result oqroduced from those parents —usingproduction

millions of years of adaptation to the demands of theoperators The fitness values of those offspring are

environment. At any given time, a number of differentdetermlned. Finally, survivors are selected from the old

organisms may co-exist and compete for the Samgopulatlon and the offspring to form the new population

resources in an ecosystem. The organisms that are m@étthe nexigeneration

capable of acquiring resources and successfull\é The mechanisms determining which and how many

procreating are the ones whose descendants will tend %rents to select, how many offspring to create, and

be numerous in the future. Organisms that are Ies\% Ig[]h(Ier;drl(\a”drlézlsn\':vgg|Zl:;2/(;\|/qenl1r:t%;ze|v|nae:t g%ﬁg{on
capable, for whatever reason, will tend to have few oF 9 P y

no descendants in the future. The former are said to bseelect|on methods have been proposed in the literature,

more fit than the latter, and the distinguishing and they vary in complexity. Typically, though, most

characteristics that caused the former to be more fit ar%electlon methods ensure that the population of each

said to beselected forover the characteristics of the geneTrsgorzr'nsatiz(ejs?gﬁﬁge'a er presents the traditional
latter. Over time, the entire population of the ecosystergeﬁ Paper p

is said toevolveto contain organisms that, on average, | or:li'fnlr?rrr]]SS' Ofan?t?c ;(Iju(;rimr?g (ljg“qa?gn 1;‘;;““%':?6%’(:
are more fit than those of previous generations of th&'9 -9 9 ' ' 9

. o [ Koza, 1992, 1994), evolutionary
opulation because they exhibit more of thosdodramming ( .
Eh;)racteristics that tend toi)romote survival. strategies (Rechenberg, 1973), and evolutionary

Evolutionary computation techniques abstract thes® irf?grr::lr:;ngetgv:ggr?l th?et aal.'ro;?:ﬁg)s. ir;l;/r:)elv;r;deltlggteﬂre
evolutionary principles into algorithms that may be usead PP

to search for optimal solutions to a problem. In a searcR]c the representation schemes, the reproduction

algorithm, a number of possible solutions to a problemOperatorS’ and the selection methods.

are available and the task is to find the best solutio3, Genetic Algorithms

1. Introduction



The most popular technique in evolutionary 4, Genetic Programming

computation research has been femetic algorithm An increasingly popular technique is thatgeetic

In the traditional genetic algorithm, the representation . .
used is dixed-length bit string Each position in the programming In a standard genetic program, the

S . representation used is a variable-sized tree of functions
string is assumed to represent a particular feature of alhd values. Each leaf in the tree is a label from an
individual, and the value . stored in that pos't'o.navailable set of value labels. Each internal node in the
represents how t'hat feature is expressed in the .SOIUt'Oﬂ"ee is label from an available set of function labels.
Usually, the string is evalgated as a co'llectlon OfThe entire tree corresponds to a single function that may
structural features of a solution that have little or no .~ .4 Typically, the tree is evaluated in a left-
interactions” (Angeline, 1996, p. 4). The analogy MY ost depth-first manne}. A leaf is evaluated as the

EZcﬂrag\;A;edlrri:(g:)e/steontgegﬁs el:titbyl Olt?]%'f aIIS osr?rir;'tirgsu'corresponding value. A function is_ evaILIJated. using as
independent of other genes }Srgumentst the res_ult of the evaluatl_on of its ch|Id_ren.

) ' Genetic algorithms and genetic programming are
similar in most other respects, except that the

a) LhpQph)| c)|1 Ljofph| reproduction operators are tailored to a tree
' = representation. The most commonly used operator is

|1 |0 |1 |0 ]0 |1 | |1 |0 |1 |0 |0 |0 | subtree crossovein which an entire subtree is swapped
b) : d) between two parents (see Figure 3). In a standard

X genetic program, all values and functions are assumed
Crossover Point to return the same type, although functions may vary in
the number of arguments they take. Tlissure
principle (Koza, 1994) allows any subtree to be
considered structurally on par with any other subtree,
and ensures that operators such as sub-tree crossover

will always produce legal offspring.
GEPEPPRE]>yf PR P EE]
Figure 2: Bit-Flipping Mutation of Parent a ' !
to form Offspring b / \ / \
- . - +
The main reproduction operator usedbisstring

crossovey in which two strings are used as parents and / \ / \ / \
2 3 2 1 4

new individuals are formed by swapping a sub-sequence,
between the two strings (see Figure 1). Another popular @ ©
operator idit-flipping mutation in which a single bit in =
the string is flipped to form a new offspring string (see X X
Figure 2). A variety of other operators have also been / \ / \
developed, but are used less frequently (&gersion
in which a subsequence in the bit string is reversed). A ° * ° '
primary distinction that may be made between the / \

1 4

Figure 1: Bit-String Crossover of Parents a & b
to form Offspring c & d

various operators is whether or not they introduce any
new information into the population. Crossover, for @
example, does not while mutation does. All operators ®

are also constrained to manipulate the string in a
manner consistent with the structural interpretation of
genes. For example, two genes at the same location on

two strings may be swapped between parents, but né&., Evolutionary Strategies

combined based on their values. In evolutionary strategies, the representation used

Trgo_liti_onally, individuals are s_elected fo be parentsis a fixed-length real-valued vector. As with the bit-
probabilistically based upon their fitness values, and theStrings of genetic algorithms, each position in the vector

offspring that are created replace the parents_. I:ocforresponds to a feature of the individual. However,

fhe features are considered to be behavioral rather than

genera:ed which replace the parents in the NeXiructural. “Consequently, arbitrary  non-linear
generation. interactions between features during evaluation are

Figure 3: Subtree Crossover of Parents a & b
to form Offspring ¢ & d



expected which forces a more holistic approach to A typical selection method is to select all the
evolving solutions” (Angeline, 1996, p. 4). individuals in the population to be the N parents, to
The main reproduction operator in evolutionarymutate each parent to form N offspring, and to
strategies isGaussian mutatignin which a random probabilistically select, based upon fitness, N survivors
value from a Gaussian distribution is added to eacfrom the total 2N individuals to form the next
element of an individual's vector to create a newgeneration.
offspring (see Figure 4). Another operator that is used i§
intermediate recombinatigin which the vectors of two - Current Issues
parents are averaged together, element by element, to In current research, the line distinguishing these
form a new offspring (see Figure 5). The effects ofdifferent approaches has started to blur. Researchers in
these operators reflect the behavioral as opposed ®&ach technique have begun to examine more complex
structural interpretation of the representation sinceepresentation schemes and to apply a variety of
knowledge of the values of vector elements is used teelection methods. Many genetic algorithm researchers
derive new vector elements. are examining the use variable-length representations
and analyzing how such representations grow in size
over the course of evolution (Wu & Lindsay, 1996).
Many genetic algorithms now use selection methods,
such aslitist recombinationin which parents compete
with their offspring for survival into the next generation
(Thierens, 1997). Some genetic programming
researchers have begun to examine the effects of
) L3072 “epresentation.  The. benells of suoh strongly typec
éC)|1'0|0'4|0'5|1'4|0'5|1'2| genetic programming are only beginning to be explored
b) 10.80.5[1.0[1.1j0.2}1.2) (Haynes et al., 1996).

Figure 5: Intermediate Recombination of Parents a & bReferences
to form Offspring c

a) [1-30-4]1.80.20.011.0=> 1;1.20.7]1.60.20.111.2

Figure 4: Gaussian Mutation of Parent a
to form Offspring b
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3.4 EVOLUTIONARY BIOLOGY

Evolutionary biology 1s a science concerned, among other things, with the study
of the diversity of life, the differences and similarities among organisms, and the
adaptive and non-adaptive charactenstics ol organisms. [ts importance are mani-
fold, from the health sciences to the understanding ol how the living organisms
adapt to the environment thev inhabit. I'or instance, evolutionary biologv helps
in the understanding of disease epidemics. population dynamics, and the produc-
tion of 1mproved cultures. Over roughly the last 60 years. compuler scientists
and engincers realized that evolutionary biology has various interesting 1deas lor
the development of theoretical models of evolution (some of them being rather
abstract models) that can be uselul to oblamn solutions to complex real-world
problems.

The word evolution is originated from the Latin evelvere, which means to un-
fold or unroll. Broadly speaking, evolution 1s a synonyvm for ‘change’. But what
type of change? We do not usually employ the word evolution to refer to the
changes suffered by an individual during 1ts hifetime. Instead, an evolving sys-
tem corresponds to the one 1n which there 15 a descent ol entities over ime, one
generation alter the other, and in which charactenistics of the entities dilfer
across generations (Futuyma, 1998). Therefore, evolution can be broadly defined
as descent with modification and olten with diversification. Many systems can
be classified as evolutionary: languages. cellular reproduction in immune sy s-
tems, cuisines, automobiles, and so on.

Any evolutionary system presents a number of features:

o Population(s): i all evolutionary systems there are populations, or
groups, of entities, generally termed individuals,

s Reproduction: in order for evolution o occur, the individuals ol the popu-
lation(s) must reproduce either sexually or asexually.

o  [ariation: there 1s variation n one or more characteristics ol the ndi-
viduals of the population(s).

o Hereditary similarity, parent and offspring individuals present simmlar
characteristics. Over the course of generations, there may be changes m
the proportions of individuals with different characteristies within a popu-
lation; a process called descent with modification.

o Sorting of variations: among the sorting processes, it can be emphasized
chance (random varation n the survival or reproduction of different
vanants), and mnafural selection (consistent, non-random differences
among variants in their rates of survival and reproduction).

Adaptation as a result of variation plus natural selection leads to improvement
in the function of an organmism and 1ts many component parts. “Biological or

e e N e S A e L

groups of such populations, over the course of generations.” (Futuvma. 1998; p.
4}. Note that according to this definition ol evolution, individual organisms do
not evolve and the changes of a population of individuals that are assumed to be
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evolutionary are those resultant from mheritance, via the genetic materal, from
one generation to the other.

The history of evolutionary biology 1s marked by a number of hypotheses and
theories about how life on carth appeared and evolved. The most influential the-
ory to date 1s the one proposed by Charles Darwin and [ormalized mn his book
Cn the Origins of Species by Means of Natural Selection, or the Preservation of
Favoured Races in the Struggle for Life (Darwin, 1839). Iistorically. Alfred
Wallace 1s also one of the proponents of the theory of evolution by means of
natural selection. but 1t was Darwin’'s book, with its hundreds of instances and
arguments supporting natural selection, the landmark f(or the theory of evolution,

Among the many preDarwinmian hypotheses for the origin and development of
beings, the one proposed by Jean Baptist Pierre Antoine de Monet, chevalier de
Lamarck, was the most influential. According to Lamarck, every species ongi-
nated individually by spontaneous generation. A ‘nervous fluid” acts within each
species, causing 1l o progress up the chain over time, along a single predeter-
mined path that every species i1s destined to follow. No extinction has occurred:
fossil species are still with us, but have been transformed. According to La-
marck, species also adapt to their environments, the more strongly exercised
organs attract more of the nervous fluid, thus getting enlarged; conversely, the
less used organs become smaller. These alterations, acquired durimg an mdivid-
ual’s hifetime through 1ts activities, are mhented. Like evervone at that time,
[.amarck believed in the so-called inheritance of acquired characteristics.

The most famous example of Lamarck’s theory 1s the giratfe: according to
Lamarck, giraffes need long necks to reach the foliage above them: because they
are constantly stretching upward, the necks grow longer; these longer necks are
inherited; and over the course of generations the necks of girafles get longer and
longer. Note that the theory of inheritance of acquired characternistics 1s not La-
marck’s original, but an already established supplement to his theory of “organic
progression’ in which spontaneous generation and a chain of beings (progression
from manimate to barely animate forms of life, through plants and invertebrates,
up to the higher forms) form the basis. Lamarck’s theory may also be viewed as
a transformational theory, i which change 1s programmed into every member
of the species.

3.4.1. On the Theory of Evolution

Darwin’s studies of the natural world showed a striking diversity of observations
over the amimal and vegetal kingdoms. His examples were very wide ranging,
from domestic pigeons, dogs, and horses, to some rare plants. His research that
resulted in the book Origin of Species took literally decades to be concluded and
formalized.

In contrast to the Lamarckian theory. Darwin was certam that the direct ef-
feets of the conditions of life were unimportant for the variability of species.

“Seedlings from the same fruit, and the young of the same litter, some-

times differ considerably from each other, though both the young and the
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parents ... have apparently been exposed to exactly the same conditions of
life; and this shows how unmimportant the direct effects of the conditions of
life are in comparison with the laws of reproduction. and of growth, and of
inheritance:; for had the action of the conditions been direct, if any of the
voung had varied. all would probably have varied in the same manner.”
(Darwin, 1859, p. 10)

Darwin starts his thesis of how species are formed [ree i nature by suggesting
that the most abundant species (those that range widely over the world) are the
most diffused and which often produce well-marked varieties of individuals over
the generations. He describes some basic rules that promote improvements
orgamsms: reproduce, change and compete for survival,

Natural selection was the term used by Darwin to explain how new characters
arising from wvariations are preserved. Ile starts thus paving the ground to his
theory that shight differences in organisms accumulated over many successive
generations might result in the appearance ol completely new and more adapted
species to their environment. As defended by himself

(45

. as a general rule. | cannot doubt that the continued selection of shght
variations ... will produce races diuffering [rom each other ...”7 (Darwin,
1859, p. 28) and ... I am convinced that the accumulative action of Selec-
tion, whether applied methodically and more quickly, or unconsciously and
more slowly, but more efficiently, 15 by [ar the predominant Power.” (Dar-
win, 1859; p. 33)

In summary, according to Darwin’s theory, evolution 1s a resull ol a popula-
tion of individuals that suffer:

¢« Reproduction with mheritance,
o  Vanation.
e  Natural selection.

These very same processes constitute the core of all evolutionary algorithms.
Belore going into the details as to how reproduction and variation happen within
mdividuals and species of individuals, some comments about why Darwin’s
theory was so revolutionary and ‘dangerous” at that time (and, to some people,
until nowadays) will be made.

3.4.2. Darwin’s Dangerous ldea

Darwin’s theory of evolution 1s controversial and has been refuted by manv be-
cause 1t presents a sound argument for how a “Nonintelhgent Artificer” could
produce the wonderful forms and orgamisms we see n nature. To D, Dennett
(1991), Darwin's dangerouns idea 1s that evolution, thus lhife. can be explained as
the product of an algorithmic process, not ol a superior being (God) creating
everything that might look wonderful to our eves. But the reason there 15 a sec-
tion on Dennett’s book here 1s not to discuss particular beliets. Instead. to dis-
course aboul some kev nterpretations of evolution. from a computational per-
spective, presented by . Dennett 1n his book Darwin’s Dangerous Idea: Fvo-
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lution and the Meanings of Life. These are not only interesting, but also useful
for the understanding of why the theory of evolution 1s swtable for the
comprehension and development ol a class ol search techniques known as
evolutionary algorithms,

Dennelt defines an algorithm as a certam sort of formal process thal can be
counted on (logically) to yield a certain sort of result whenever it 1s run or in-
stantiated. I1e emphasizes that evelution can be understood and represented in an
abstract and common termmology as an algorithmic process. 1t can be hifted out
of 1ts home base in biology. Evolutionary algorithms are thus those that embody
the major processes mvolved n the theory of evolution: a population of mdi-
viduals that reproduce with inheritance, and sufter variation and natural selec-
tion,

Dennett also discusses what can be the outcomes of evolution and its probable
implications when viewed as an engineering process. Ile stresses the importance
ol genetic vanation and selection, and quoles an mnleresting passage [tom M
Eigen (1992).

“Selection 18 more hke a particularly subtle demon that has operated on
the different steps up to hife. and operates todav at the different levels of
life, with a set of highly onginal tricks. Above all, it 1s highly active, driven
by an internal feedback mechanism that searches in a very discriminating
manner for the best roule to optimal performance. not because 1l possesses
an mherent drive towards any predestined goal, but simply by virtue ol 1ts
inherent non-linear mechamsm, which gives the appearance ol goal-
directedness.” (Higen, 1992; quoted by Dennett, 1991, p. 195)

Another important argument 1s that evolution requires adapiation (actually 1t
can also be seen as adaptation plus selection, as discussed in the previous chap-
ter). From an evolutionary perspective, adaptation is the reconstruction or pre-
diction of evolutionary events by assuming that all characters are established by
direct natural selection of the most adapted state, 1.e the state that 15 an “opti-
mum solution” to a “problem” posed by the environment. Another defuition 1s
that under adaptation, orgamisms can be viewed as complex adaptive systems
whose parts have (adaptive) functions subsidiary to the [tness-promoting [unc-
t1ion of the whole

The kev 1ssue to be kept in mind here 1s that evolution can be viewed as an al-
gorithmic process that allows - via reproduction with inhentance, variation and
natural selection - the most adapted organisms to survive and be driven to a state
of high adaptanlity (optimality) to their environment. These are the inspiring
principles of evolutionary algorithms; the possibility of modeling evolution as a
search process capable ol producing individuals (candidate solutions to a prob-
lem) with increasingly better “performances’ in their environments.

3.4.3. Basic Principles of Genetics

The theory of evolution used in the development of most evolutionary algo-
rithms 1s based on the three main aspects raised by Darwin as being responsible
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for the evolution of species: reproduction with inheritance, variation, and selec-
tion. However, the origins of heredity along with variations, which were some of
the main mgredients for the natural selection theory, were unknown at that time.
This section explores the genetic basis of reproduction and vanation in order to
provide the reader with the necessarv biological background o develop and un-
derstand evolutionary algorithms. in particular genetic algorithms. The union of
genetics with some notions of the selection mechanisms, together with Darwin’s
hypotheses led to what 1s currently known as neo-Darwinism.

Gregor Mendel's paper establishing the foundations of genetics (a missing bt
for a broader understanding of the theory of evolution) was published only 1n
1865 (Mendel, 1865), but it was publicly 1gnored until about the 1900. He per-
formed a series of careful breeding experiments with garden peas. In summary,
Mendel selected strains of peas that differed m particular traits (characteristics).
As these differences were clearly distinguishable. their phenotypes (measurable
attributes, or observable physical or biochemical characteristics of an organism)
were 1dentlified and scored. For mslance, the pea seeds were either smooth or
wrinkled, the pod shape was either inflated or constricted, and the seed color
was etther yellow or green. Then, Mendel methodically performed crosses
among the many pea plants. counted the progeny, and interpreted the results.
From this kind of data, Mendel concluded that phenotypie traits were controlled
by factors, later called Mendelian factors, and now called genes. Genotype 15 the
term currently used to describe the genetic makeup of a cell or organism, as dis-
tinguished from its physical or biochemical characteristics (the phenotype).
Figure 3.4 summarnizes the first experiment performed by Mendel.

The basic structural element of all orgamisms 1s the cell. Those orgamsms
whose genetic malerial 1s located in the mclens (a discrete structure within the
cell that 15 bounded by a nuclear membrane) of the cells are named enkaryores.
Prokaryotes are the organisms that do not possess a nuclear membrane sur-
rounding their genetic material. The description presented here focuses on eu-
karyolic organisms.

Parent peas ﬂj Q Parents gametes: eE x e E
e Gametes O O
&l EE e E

e E S
o @ . @ ®
pea
Ee g e

Generation 1 Generation 2

Figure 3.4: Iirst expenment of Mendel, When crossing a normal pea with a wrinkled
pea. a normal pea was generated (generation 1). By crossing two daughters from genera-
ion 1. three normal peas were generated plus one wrinkled pea. Thus, there 1s a recessive
gene (e) that only manifests itself when there 1s no dominant gene together. Furthermore,
there 15 a genetic mmhentance [rom parents to oflspring: those oflspring that carry a lactor
that expresses a certain characteristic may have offspring with this characternistic.
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(d)

Figure 3.5: Enlargement of an organism to focus the genetic matenal. (a) Human organ-
1sm. (b) Cells composing the organism. (¢) Each cell nucleus contains chromosomes, (d)
Fach chromosome 1s composed of a long [DNA segment, and the genes are the functional
portions of DNA. (¢) The double helix of DNA. (Modified with permission from [Gnl-
fiths et al., 1996], © W. I Freeman and Company.)

In the cell nucleus, the genelic material 1s complexed with protemn and 1s or-
ganized into a number of linear structures called chromosemes, which means,
‘colored body’, and 15 so named because these threadlike structures are visible
under the hight microscope only after they are stained with dves. A gene 1s a
segment ol a helix molecule called deoxyribonucleic acid. or DNA for short,
FEach cukaryotic chromosome has a single molecule of DNA going from one end
to the other. Each cell nucleus contains one or two sets of the basic DNA com-
plement, called genome. The genome itself 1s made of one or more chromo-
somes. The genes are the functional regions of DNA. Figure 3.5 depicts a series
of enlargements of an organism to focus on the genetic material,

It 1s now known that the DNA 1s the basis for all processes and structures of

life. The DNA molecule has a structure that contributes to the two most funda-
mental properties of life: reproduction and development. DNA 15 a double helix
structure with the inherent feature of being capable of replicating itself belore
the cell multiplication, allowing the chromosomes to duphcate into chromatids,
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Figure 3.6: When new cells are formed, the DNA replication allows a chromosome o
have a pair of oftspring chromosomes and be passed onto the offspring cells
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Figure 3.8: Asexuval reproduction in haploids. The chromosome replicates itsell, the cell
nucleus 1s divided through a process named mitosis, and then the cell 15 divided imto two
identical progeny.

Sexuwal reproduction 1s the fusion of two haploid gametes (sex cells) to pro-
duce a single diploid zygote cell. An important aspect of sexual reproduction 1s
that 1t involves genelic recombination; that 1s. 1t generates gene combinations n
the offspring that are distinet from those m the parents. Sexually reproducing
orgamsms have two sorts of cells: somatic (body) cells, and germ (sex) cells. All
somalic cells reproduce by a process called mitosis that 1s a process ol nuclear
division followed by cell division. Figure 3.9 illustrates the process ol sexual
reproduction.
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Figure 3.9: Sexual reproduction. A diploid chromosome replicates itself, then the homo-
logues are separated generating haplond gametes. The gametes from each parent are fused
to generate a diplod zygote.
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Figure 3.10: Crossing over between two loci in a cell undergoing the first meiotic divi-
ston. Of the four chromatids, two will have new combinations and two will retain the
parental combination ol alleles.

In the classical view of the melosis process in sexual reproduction, homolo-
gous chromosomes [irst undergo the formation of a very tight association of
homologues, and then the reciprocal physical exchange of chromosome seg-
ments at corresponding positions along pairs of homologous chromosomes, a
process termed crossover (Russel, 1996). Crossing-over 15 a mechanism that can
give rise to genetic recombination, a process by which parents with different
genetic characters give birth to progenv so that genes are associated 1in new
combmations. Figure 3,10 depicts the crossing-over process,

The dilferences among organisms are outcomes of the evolutionary processes
of mutation (a change or deviation in the genetic material). recombination or
crossover (exchange ol genetic matenial between chromosomes, sce ligure
3.10), and selection (the favoring of particular combmations of genes in a given
environment). With the exception of gametes, most cells of the same eukarvotic
organism characteristically have the same number of chromosomes. Further, the
organization and number of genes on the chromosomes of an organism are the
same from cell to cell. These characteristics of chromosome number and gene
organization are the same for all members of the same species. Deviations are
known as mutations: these can arise spontaneously or be induced by chemical or
racdiation mutagens. Several types of mutation exist, for instance point mutation,
deletion, translocation. and inversion. Point mutation. deletion and inversion are
lustrated m Figure 3,11,
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Figure 3.11: Some tvpes of chromosomal mutation. namelv, point mutation, deletion,
and inversion,
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3.4.4. Evolution as an Outcome of Genetic Variation Plus Selection

So far we have seen the two types ol reproduction, sexual and asexual. and some
of the main mechanisms that alter the genetic makeup of a population of mdi-
viduals, emphasizing crossover and mutation. It stull remains to discuss the
process by which these altered individuals survive over the generations.

Populations of individuals change over time. The number of mmdividuals may
merease or decrease, depending on food resources, climate, weather, availability
of breeding areas, predators, and so forth. At the genetic level, a population may
change due to a number ol [actors. such as mutation and selection. These proc-
esses not only alter allele [requencies, bul also result mn changes in the adapia-
tion and diversity of populations, thus leading to the evolution of a species
(Gardner et al.. 1991).

The wviability and fertility of an individual are associated with fitness, a term
that 15 used to describe the overall ability of an orgamism to survive and repro-
duce. In many populations, survival and reproductive ability are vanable traits.
Some mndividuals die before they have a chance to reproduce, whereas others
leave many progeny. In a population ol stable size, the average number of off-
spring produced by an mdividual 1s one.

Variation in fitness 1s partially explamed by the underlying genetic differences
ol individuals. The crossing-over of parental genetic material and mutation can
increase or decrease fitness. depending on their effects on the survival and re-
productive capabilities of the individuals. Thus, genetic recombimation and mu-
tation can create phenotypes with different htness values. Among these, the
most it will leave the largest number of offspring. This differential contribution
of progeny implies that alleles associated with superior fitness will increase mn
frequency 1n the population. When thus happens, the population 1s said to be
undergomg selection.

As Darwin made a series of observations of domestic animals and plants. and
also those existing free in nature, he used the term natural selection to describe
the latter 1in contrast to men’s selection capabilities of domestic breeds. To our
purposes, the more general term selection 1s assumed 1n all cases. bearing n
mind that selection under nature has been originally termed natural selection,
and selection made by men has been sometimes termed artificial selection.

Under the evolutionary biology perspective, adapiation 1s the process by
which traits evolve making organisms more suiled to therr immediate environ-
ment; these traits increase the organisms” chances of survival and reproduction,
Adaptation 1s thus responsible for the many extraordinary traits seen n nature,
such as eves that allow us to see. and the sonar 1n bats that allow their gumidance
through the darkness. Note however, that, more accurately speaking. adaptation
1s a result of the action of both, vanation and selection. Variation by itself does
not result in adaptation; there must be a way (1.e., selection) of promoting the
maintenance of those advantageous variations.

S, Wnight (1968-1978) mtroduced the concept of adaptive landscapes or fit-
ness landscapes, largely used mn evolutionary biology. In his model. each po-
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pulation of a species (reproductively 1solated group) 1s symbolized by a point on
a fopographic map, or landscape. The contours of the map represent different
levels of adaptation to the environment (fiiness). Populations at high levels
(peaks) are more adapted to the environment, and populations at low levels (val-
leys) are less adapted. Al any one time. the position of a population will depend
on s genelic makeup. Populations with alleles that improve fitness will be at a
higher peak than populations without these alleles. Consequently, as the genetic
makeup of a population changes, so will its position on the adaptive landscape.
Figure 3.12 depicts a landscape representing the different levels of adaptation of
the populations in relation to the environment.

The adaptive (fitness) landscape corresponds to the response surface discussed
n Section 3.2.1 in the context of problem solving via search in a search space,
Note that, under the evolutionary perspective, the search performed 1s lor indi-
viduals with increased survival and reproductive capabilities (fitness) in a given
environment ([itness landscape),

M miche can thus be defined as the region consisting of the set of possible en-
vironments i which a species can persist; members ol one species occupy the
same ecological niche. In natural ecosystems, there are many different ways in
which amimals may survive (grazing, hunting, on water, etc.), and cach survival
strategy 15 called an ecological niche. [Towever, 1t 1s generally recognized that
the miche of a single species may vary widely over its geographical range. The
other fundamental concept of niche was proposed by Elton (1927) “The niche of
an animal means 1ls place 1 the biotic environment, 1ts relabions to food and
enemies;” where the term biotic refers to life. living organisms, Thus, niche in
this case 1s being used to describe the role of an animal in 1ts communty (Krebs,
1994),

Figure 3.12: An example of an adaptive landscape. The topographic map (landscape or
surface) corresponds to the different levels of adaptation of the populations (points i the
landscape) to the environment. The populations or individuals at each peak are assumed
to be reproductively 1solated, 1.e., they onlv breed with individuals in the same peak. thus
forming species inhabiting distinet miches.
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It has been discussed that evolution 1s an outcome of genetic vanation plus se-
lection. In order for continwing evolution to occur, there must be mechamsms
that mncrease or create genetic variation and mechanmisms that decrease 1t. We
have also seen that recombination and mutation cause differences among (vara-
tions 1) organisms. Other two important mechanisms of evolution are the so-
called genetic drift (chance [luctuations that resull in changes 1n allele [requen-
cies) and gene flow (spread of genes among populations via migration). It 1s
known that selection and genetic drnft decrease variation, while mutation, re-
combination, and gene flow increase genetic vanation (Colby, 1997).

Natural selection sifts through the genetic vanations m the population, pre-
serving the beneficial ones and ehminating the harmful ones. As it does this,
selection tends to drive the population uphill in the adaptive or fitness landscape,
By contrast, the random genetic drift will move the population i an unpredict-
able fashion. The effect of all these mechanisms (mutation, recombimation, ge-
netic drift. gene tlow, plus selection) will bring the population to a state of “ge-
netic” equilibrium, corresponding to a point near or at a peak on the adaptive
landscape. Actually, the population will hover around a peak because ol [Tuctua-
tions caused by genetic drift. Note also, that, under nature, the environment 1s
constantly changing. hence the population 1s also adapting to the new landscape
resultant from the new environment, in a never-ending process of variation and
selection.

3.4.5. A Classic Example of Evolution

A classic example of evolution comes from species that hive in disturbed habi-
tats. In the particular example of the evolution of melanie (dark) forms of moths,
human activity has altered the environment and there has been a corresponding
change in the species that inhabit this environment. The peppered moth, Biston
hetularia. 1s found 1in wooded areas 1n Great Britain, where 1t exists in two color
forms, light and dark, hght being the typical phenotype of this species, The dif-
ference between the two forms 1s belhieved to mnvolve a single gene. Since 1850,
the lrequency of the dark form has mcreased n certain areas m England, i par-
ticular in industrialized parts of the country. Around heavily industriahized cities,
such as Manchester and Birmingham, the frequency of the dark form has in-
creased drastically [rom 1 to 90% in less than 100 vears. In other areas ol Eng-
land, where there 1s little industrial activity, the dark [orm has remained very
rare (Gardner et al., 1991).

The rapid spread of the dark form in industrialized areas has been attributed
to natural selection. Both, light and dark forms are active at night. During the
day, the moths remain still, resting on tree trunks and other objects 1n the wood-
lands. Since birds may find the moths and eat them during their resting period,
camouflage 1s their only defense against predation. On white or gray tree bark,
the light moths are protectively colored, especially 1f the bark 1s overgrown with
lichens, However, in industriahized areas most of the lichens have been killed by
pollution and the tree bark 1s oftenest darkened by soot. Such conditions olfer
little or no cover for the hight moths. but make 1deal resting spots for the dark



