
Bio-inspired computation 

Biologically inspired computing (also bio-inspired computing) is a field of study that 

loosely knits together subfields related to the topics of connectionism, social behavior and 

emergence. It is often closely related to the field of artificial intelligence, as many of its 

pursuits can be linked to machine learning. It relies heavily on the fields of biology, 

computer science and mathematics. Biologically inspired computing is a major subset of 

natural computation. The field of biocomputation has a twofold definition: the use of 

biology or biological processes as metaphor, inspiration, or enabler in developing new 

computing technologies and new areas of computer science; and conversely, the use of 

information science concepts and tools to explore biology from a different theoretical 

perspective. In addition to its potential applications, such as DNA computation, 

nanofabrication, storage devices, sensing, and health care, biocomputation also has 

implications for basic scientific research. It can provide biologists, for example, with an 

IT-oriented paradigm for looking at how cells compute or process information, or help 

computer scientists construct algorithms based on natural systems, such as evolutionary 

and genetic algorithms. Biocomputing has the potential to be a very powerful tool. 

The domain of bio-inspired computing is gradually getting prominence in the current 

times. As organizations and societies are gearing towards a digital era, there has been 

an explosion of data. This explosion of data is making it more and more challenging to 

extract meaningful information and gather knowledge by using standard algorithms, due 

to the increasing complexity of analysis. Finding the best solution increasingly becomes 

very difficult to identify, if not impossible, due to the very large and dynamic scope of 

solutions and complexity of computations. Often, the optimal solution for such a NP hard 

problem is a point in the n-dimensional hyperspace and identifying the solution is 

computationally very expensive or even not feasible in limited time. Therefore intelligent 

approaches are needed to identify suitable working solutions. 

In this context, intelligent meta-heuristics algorithms can learn and provide a suitable 

working solution to very complex problems. Within meta-heuristics, bio-inspired 

computing is gradually gaining prominence since these algorithms are intelligent, can 

learn and adapt like biological organisms. These algorithms are drawing attention from 

the scientific community due to the increasing complexity of the problems, increasing 

range of potential solutions in multi-dimensional hyper-planes, dynamic nature of the 

problems and constraints, and challenges of incomplete, probabilistic and imperfect 

information for decision making. However, the fast developments in this domain is 

increasingly getting difficult to track, due to different algorithms which are being 

introduced very frequently. However, no study has attempted to identify these algorithms 

exhaustively, explore and compare their potential scope across different problem 

contexts. 

In fact very few researchers are often familiar with the developments in the domain, where 

more and more new algorithms are gaining acceptance and prominence. Therefore, with 



limited visibility across algorithms, new researchers working in this domain tend to focus 

on very limited and popular approaches, and therefore often “force-fit” algorithms rather 

than exploring the most suitable one, based on the problem statement, due to limited 

awareness. To address this gap, we review some of the popularly used bio-inspired 

algorithms as well as introduce the newly developed algorithms which have a huge 

potential for applications. Further to that, we also explore the potential scope of 

applications of the algorithms in specific domains, based on published scientific literature. 

While twelve of the slightly popular algorithms have been discussed, the scope of future 

research in other bioinspired algorithms has been discussed. However, in depth 

discussion about the implementation (e.g. pseudocode, etc) and enhancements in each 

algorithm is beyond the scope of the current article. Further, specific detailed citations of 

each application could not be provided, but we attempt to generalize whenever possible 

based on other focused reviews. 
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1. What is Life?
“What was life? No one knew. It was undoubtedly aware of itself, so soon as it was life; but it did not know
what it was”. Thomas Mann [1924]

Threshold of Complexity

“Seeking a connecting link, they had condescended to the preposterous assumption of structureless living
matter, unorganized organisms, which darted together of themselves in the albumen solution, like crystals in
their mother-liquor; yet organic differentiation still remained at once condition and expression of all life. One
could point to no form of life that did not owe its existence to procreation by parents”. Thomas Mann [1924].

“Nothing in biology makes sense without evolution”. Theodosius Dobzhansky [1973]

Biologically-inspired computing is an interdisciplinary field that formalizes processes observed in living
systems to design computational methods for solving complex problems, or simply to endow artificial
systems with more natural traits. But to draw more than superficial inspiration from Biology we need to
understand and discuss the concept of life.  It should be noted that for the most part of the history of
humanity, the question of what life is was not an important issue. Before the study of mechanics became
important, everything was thought to be alive: the stars, the skies, the rivers and mountains, etc. There was
no non-life, so the concept was of no importance. It was only when people started to see the World as
determined by the laws of mechanics that the question arose. If all matter follows simple physical laws, then
what is indeed the difference between life and non-life, between biology and physics? Let us then start with
a current dictionary definition:

“life   adj.— n.1. the general condition that distinguishes organisms from inorganic objects and dead organisms,
being manifested by growth through metabolism, a means of reproduction, and internal regulation in response to
the environment. 2. the animate existence or period of animate existence of an individual. 3. a corresponding state,
existence, or principle of existence conceived of as belonging to the soul. 4. the general or universal condition of
human existence. 5. any specified period of animate existence. 6. the period of existence, activity, or effectiveness
of something inanimate, as a machine, lease, or play. 7. animation; liveliness; spirit: The party was full of life. 8.
the force that makes or keeps something alive; the vivifying or quickening principle.” [Random House Webster’s
Dictionary]

The definitions above fall into three main categories: (1) life as an organization distinct from inorganic matter
(with an associated list of properties), (2) life as a certain kind of animated behavior, and (3) life as a special,
incommensurable, quality—vitalism.  Throughout this course we will see that all principles, and indeed all
controversies, associated with the study of life fall into one of these categories or the differences among them. 
The third category has been discarded as a viable scientific explanation, because for science nothing is in
principle incommensurable. The question of whether life is organized according to a special design,
intelligent or mysterious, pertains to metaphysics. If the agent of design cannot be observed with physical
means, then it is by definition beyond the scope of science as it cannot be measured, and any theories derived
from such a concept cannot tested.  

While metaphysical dispositions do not pertain to science, many scientists have observed that a naive
mechanistic decomposition of life may also fail to explain it. The traditional scientific approach has lead the
study of living systems into a reductionist search for answers in the nitty-gritty of the biochemistry of living
organisms. This alternative sees life as nothing more than the complicated physics of a collection of moving



bodies. However, the question remains unanswered since there are many ways to obtain some complicated
dynamics, but of all of these, which ones can be classified as alive? What kind of complexity are we looking
for? No one disputes that life is some sort of complex material arrangement, but when do we reach a
necessary threshold of complexity after which matter is said to be living? Is it a discrete step, or is life a fuzzy
concept? To understand it without meaningless reduction, must we synthesize organizations with the same
threshold of complexity (first category above), or is it enough to simulate its animated behavior (second
category above)?

Information Organizes and Breeds Life
 

“Life is a dynamic state of matter organized by information”. Manfred Eigen [1992]

“Life is a complex system for information storage and processing”. Minoru Kanehisa [2000]

Traditionally life has been identified with material organizations which observe certain lists of properties, e.g.
metabolism, adaptability, self-maintenance (autonomy), self-repair, growth, replication, evolution, etc. Most
living organisms follow these lists, however, there are other material systems which obey only a subset of
these rules, e.g. viruses, candle flames, the Earth, certain robots, etc. This often leads to the view that life is
at best a fuzzy concept and at worst something we are, subjectively, trained to recognize—life is what we can
eat—and is thus not an objective distinction.  The modern-day molecular biology view of life, on the other
hand, tends to see life as a material organization that if not completely defined by genomic information, is
at least fully controlled by it. Thus, when Craig Venter’s team [Gibson et al, 2010] recently produced a
bacteria with a “prosthetic genome” [a termed coined by Mark Bedau, see Nature | Opinion, 2010] copied
from another bacteria but synthesized in the lab, the momentous synthetic biology feat was announced as the
creation of the first synthetic or artificial life form.

The artificial life field, whose members tend to follow the fuzzy list of properties conception of life, does not
typically recognize Venter’s bacteria with a prosthetic genome as a bona fide synthesis of artificial life, since
it relies on the pre-existence of a working, naturally-obtained cell to implant a prosthetic genome into. Even
most molecular biologists will agree that we are nowhere near understanding, let alone synthesizing an
artificial cell from scratch [e.g. George Church, see Nature | Opinion, 2010]. Nonetheless, Venter’s
achievement begs at least the question of what is it about life’s design principle that makes it easier to
synthesize a working prosthetic genome than a working “prosthetic proteome or metabolome”? It also makes
us think about what does “understanding life” mean for biology, biomedical technology, artificial life, and
informatics? Why is genetic information so important and how does it relate to information technology?

Life requires the ability to both categorize and control events in its environment in order to survive. In other
words, organisms pursue (or even decide upon) different actions according to information they perceive in
an environment. Furthermore, living organisms reproduce and develop from genetic information. More
specifically, genetic information is transmitted “vertically” (inherited) in phylogeny and cell reproduction,
and expressed “horizontally” within a cell in ontogeny for the functioning of living organisms as they interact
and react with their environments—we are now sure that genetic information can also be transmitted
horizontally between organisms and play an important role in evolution [Goldenfeld & Woese 2007; Riley,
2013].  Indeed, the difference between living and non-living organizations seems to stand on the ability of
the former to use relevant information for their own functioning. It is this “relevant” which gives life an extra
attribute to simple mechanistic interactions. When an organization is able to recognize and act on aspects of
its environment which are important to its own survival, we say that the mechanisms by which the
organization recognizes and acts are functional in reference to the organization itself (self-reference).  Physics
is not concerned with function. A physical or chemical description of DNA is certainly possible, but will tell
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us nothing as to the function of a DNA molecule as a gene containing relevant information for a particular
organism. Only in reference to an organism does a piece of DNA function as a gene (e.g. an enzyme with
some effect in an environment).

Thus it is remarkable that in Venter’s experiment, a cell with a synthesized prosthetic genome from a similar
but distinct organism, was able to reproduce over and over resulting in a cell with a different phenotype from
the original, implanted cell—in effect, a cell re-programmed by a synthesized genome. Is life then a type of
computer that can be reprogrammed? This also leads us to question how general-purpose can such genomic
re-programming be?  Will it be restricted to very narrow classes of similar organisms, or will it ever be
possible to re-program any prokaryotic or eukaryotic cell ? 

Emergence and Explanation

“First, nothing in biology contradicts the laws of physics and chemistry; any adequate biology must be consonant
with the ‘basic’  sciences. Second, the principles of physics and chemistry are not sufficient to explain complex
biological objects because new properties emerge as a result of organization and interaction. These properties can
only be understood by the direct study of the whole, living systems in their normal state. Third, the insufficiency of
physics and chemistry to encompass life records no mystical addition, no contradiction to the basic sciences, but
only reflects the hierarchy of natural objects and the principle of emergent properties at higher levels of
organization”. Stephen Jay Gould [1984].

This issue could be rephrased in terms of the notion of emergence. Whatever (macro-level) organization exists
after the complexity threshold for life is passed, we may say that it is emergent because its attributes cannot
be completely explained by the (micro-) physical level. In particular, function, control, and categorization
cannot be explained by the mechanics and dynamics of the components of life alone. Notice, however, that
emergence does not imply vitalism or dualism. When we say that certain characteristics of life cannot be
explained by physics alone, we mean that they must be explained by different, additional models—namely,
informational, historical and functional descriptions. In other words, though biological function, control, and
categorization cannot be explained by physics alone, organisms, like anything else, must nonetheless follow
physical laws. But information is contextual, and therefore requires more than universal models: it requires
contingent, context-specific descriptions. In particular, the origin of life, is a problem of emergence of
information from a physical milieu under specific constraints [Eigen, 1992]. This is the crux of complex
systems: the interplay between micro- and macro-level descriptions determines their behavior, and both levels
(emergence) are required to understand complexity.

The definition of emergence as an epistemological, explanatory requirement, is related to the notion of
emergence-relative-to-a-model [Rosen, 1985; Cariani, 1989] or intensional emergence [Salthe 1991].  It
refers to the impossibility of epistemological reduction of the properties of a system to its components [Clark,
1996].  As an example, we can think of phase transitions such as that of water in its transition from liquid to
gas. Water and its properties cannot be rephrased it terms of the properties of hydrogen and oxygen, it needs
a qualitatively different model. Another example of complementary models of the same material systems is
the wave-particle duality of light.

Physicists understand the laws of nature (as best they can), but it takes engineers to control nature. The very
best physicists are the very best engineers, but those are exceedingly rare (e.g. Von Neumann). The goal of
complex systems is to understand organized complexity (life, society, cognition) in the same way physicists
understand nature [Weaver, 1948]. Biology, as a discipline, has not entirely “made up its mind” if it wants
to understand life as a physicist or control it as an engineer. Due to its focus on the micro-level of life, its
biochemistry, molecular biology follows essentially a (reverse-) engineering, black-box methodology
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(knockouts, controls, etc.). This leads to a bit of a schizophrenic agenda: focusing exclusively on micro-level
experiments in order to suggest macro-level understandings.  If the goal is control of biology, say for
biomedical advances, then we really need to focus on biotechnology engineering. If the goal is understanding,
then we need to focus more on macro-level organized complexity. Ideally, a healthy life sciences program
would tie the need to understand with the need to control better—like physicists and engineers do. 

This is where complex systems, artificial life, and bio-inspired computing can contribute to a wider arena of
the life sciences; they can be used as laboratories for experimenting with theories of organized complexity,
and thus enrich our understanding of life. Artificial life concerns both the simulation and realization of life
in some artificial environment, usually the computer.  At least regarding the second of its goals, artificial life 
aims to understand the fundamental micro/macro-level interaction that leads to organized complexity. Bio-
inspired computing, as a more pragmatic endeavor, does not need to concern itself with synthesizing actual
life, but only with drawing analogies from life (real and artificial). Nonetheless, if the main motivation of bio-
inspired computing is that life with its designs has already solved versions of many complex engineering
problems we are interested in, then a thorough and accurate understanding of the essential characteristics of
life is inescapable. Moreover, by abstracting context-specific principles of life to make them relevant in other
settings, provides a useful laboratory to experiment with theoretical biology.

Further Readings and References:
Cariani, Peter [1989].On the Design of Devices with Emergent Semantic Functions. PhD.Dissertation. SUNY

Binghamton.
Clark, Andy [1996]. “Happy couplings: emergence and explanatory interlock.” In: The Philosophy of Artificial Life. M.

Boden (ed.). Oxford University Press, pp. 262-281.
Dobzhansky, T. [1973]. “Nothing in Biology Makes Sense Except in the Light of Evolution”. The American Biology

Teacher, March 1973 (35:125-129)
Eigen, M. [1992]. Steps Towards Life. Oxford University Press.
D. G. Gibson et al [2010]. “Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome”. Science. 329

(5987):  52-56
Goldenfeld, Nigel, and Carl Woese [2007]. “Biology’s Next Revolution.” Nature 445 (7126): 369. 
Gould, Stephen Jay [1984]. Natural History; Jan84, Vol. 93 Issue 1, p24. 
Mann, T. [1924]. The Magic Mountain. As quoted by Eigen [1990].
Nature | Opinion [2010] “Life after the synthetic cell”.  Nature 465: 422–424
Pattee, Howard H. [1978]."The complementarity principle in biological and social structures." In:  Journal of Social and

Biological Structures Vol. 1, pp. 191-200.
Polanyi, M. [1968]. “Life’s irreducible structure”. Science, 160 (3834), 1308-1312.
Riley, D. R., K.B. Sieber, K. M. Robinson, J. R. White, A. Ganesan, S. Nourbakhsh, and J. C. Dunning Hotopp [2013].

“Bacteria-Human Somatic Cell Lateral Gene Transfer Is Enriched in Cancer Samples.” PLoS Computational Biology
9 (6): e1003107.

Salthe, Stanley N. [1991], “Varieties of Emergence”. World Futures Vol. 32, pp.69-83
Schrödinger, Erwin [1944]. What is Life?.  Cambridge University Press.
Weaver, W. [1948]. "Science and Complexity". American Scientist, 36(4): 536-44.

For next lectures read:
Dennet, D.C. [2005]. "Show me the Science". New York Times, August 28, 2005.
Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
Kanehisa, M. [200]. Post-genome Informatics. Oxford University Press. Chapter 1, Blueprint of life, pp. 1-23.
Langton, C. [1989], “Artificial Life” In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.
Nunes de Castro,  Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications.

Chapman & Hall. Chapter 1, pp. 1-23. 
Polt, R. [2012]. "Anything but Human". New York Times, August 5, 2012 
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2. The logical Mechanisms of Life
“The designs found in nature are nothing short of brilliant, but the process of design that generates them is utterly
lacking in intelligence of its own”.  Daniel Dennett, NY Times 2005

Life-As-It-Could-Be: but, what is non-life-as-it-could-be?

“Artificial Life [AL] is the study of man-made systems that exhibit behaviors characteristic of natural living systems.
It complements the traditional biological sciences concerned with the analysis of living organisms by attempting
to synthesize life-like behaviors within computers and other artificial media. By extending the empirical foundation
upon which biology is based beyond the carbon-chain life that has evolved on Earth, Artificial Life can contribute
to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-be. [...] [AL] views
life as a property of the organization of matter, rather than a property of the matter which is so organized. Whereas
biology has largely concerned itself with the material basis of life, Artificial Life is concerned with the formal basis
of life. [... It] starts at the bottom, viewing an organism as a large population of simple machines, and works upwards
synthetically from there — constructing large aggregates of simple, rule-governed objects which interact with one
another nonlinearly in the support of life-like, global dynamics. The ‘key’ concept in AL is emergent behavior.”
[Langton, 1989, pp 1-2] 

 

“Artificial Life is concerned with tuning the behaviors of such low-level machines that the behavior that emerges
at the global level is essentially the same as some behavior exhibited by a natural living system. [...] Artificial Life
is concerned with generating lifelike behavior.”  [Langton, 1989, pp 4 and 5] 

The previous quotes indicate the goals of Artificial Life according to Chris Langton: the search for complex,
artificial, systems which instantiate some kind of lifelike organization. The field is interested in both
synthesizing an actual artificial living organization, as well as simulating lifelike behavior. The first goal is
more ambitious and related to the first definition of life introduced in lecture one, while the second goal is
related to the second definition.  The methodology to reach either of these goals is also in line with the notion
of emergence mentioned in lecture one: from the non-linear interaction of simple, mechanistic, components,
we wish to observe the emergence of complicated, life-like, unpredictable, behavior. Natural living organisms
are likewise composed of non-living components. As pointed out in lecture one, the origin problem in biology
is precisely the emergence of life from non-living components. The material components follow, and are
completely described, by physical laws, however, a mechanistic explanation of the overall living system is
incomplete. Similarly, in Artificial Life, we have formal components obeying a particular set of axioms, and
from their interaction, global behavior emerges which is not completely explained by the local formal rules.
Clearly, the formal rules play the role of an artificial matter and the global behavior, if recognized as life-like,
plays the role of an artificial biology.

“Of course, the principle assumption made in Artificial Life is that the ‘logical form’ of an organism can be
separated from its material basis of construction, and that ‘aliveness’ will be found to be a property of the former,
not of the latter.” [Langton, 1989, page 11]

The idea is that if we are able to find the basic design principles of living organization, then the material
substrate used to realize life is irrelevant. By investigating these basic principles we start studying not only
biological, carbon-based, life — life-as-we-know-it — but really the universal rules of life, or life-as-it-could-
be.  Moreover, from a better understanding of the design principles of life, we can use them to solve
engineering problems similar to those that living organisms face [Segel and Cohen, 2001; DeCastro and Von
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Zuben, 2005]. Several problems have been raised regarding this separation of matter from form, or the search
for a universality without matter [Cariani, 1992; Moreno et al, 1994], which will not be discussed here. What
needs to be made more explicit is the relationship between the two distinct goals of AL. 

Looking at emergent behavior, obtained from formal complex systems, in search of interesting behavior leads
to a certain circularity. If AL is concerned with finding life-like behavior in artificial, universal, systems,  we
are ultimately binding life-as-could-be to the behavior of life-as-we-know-it by virtue of some subjective
resemblance. This can hardly be accepted as the search for universal principles.

“They say, ‘Look, isn’t this reminiscent of a biological or a physical phenomenon!’ They jump in right away as if
it’s a decent model for the phenomenon, and usually of course it’s just got some accidental features that make it look
like something.” [Jack Cowan as quoted in Scientific American, June 1995 issue, “From Complexity to Perplexity”,
by J. Horgan, page 104]

 

“Artificial Life — and the entire field of complexity—seems to be based on a seductive syllogism: There are simple
sets of mathematical rules that when followed by a computer give rise to extremely complicated patterns. The world
also contains many extremely complicated patterns. Conclusion: Simple rules underlie many extremely complicated
phenomena in the world. With the help of powerful computers, scientists can root those rules out.” [J. Horgan, 
Scientific American, June 1995 issue, “From Complexity to Perplexity”, page 107]

 

“Artificial Life is basically a fact-free science”. [John Maynard Smith as quoted in Scientific American, June 1995
issue, “From Complexity to Perplexity”, by J. Horgan, page 107]

The problem is that Artificial Life must be compared to something, otherwise it becomes a factless
manipulation of computer rules with subjective resemblances to real life. Again, we are faced with many
possible types of emergent complex behaviors, this time formal, but what kinds of  behaviors can be classified
as “life-as-could-be”? What is the formal threshold of complexity needed? In the natural world we are able
to distinguish life from non-life, biology from physics due to the known signatures of bio-chemistry. In the
logical realm, we likewise need a formal criteria to distinguish logical life from logical non-life, artificial life
from artificial physics.

“Artificial Life must be compared with a real or an artificial nonliving world. Life in an artificial world requires
exploring what we mean by an alternative physical or mathematical reality.” [Pattee, 1995]

The two goals of AL are usually described as hard and soft AL respectively. The first concerns the synthesis
of artificial life from computational or material (e.g. embodied robotics) components. The second is interested
in producing life-like behavior and is essentially metaphorical. To be accepted as a scientific field, Alife
cannot settle for  subjective rules of what constitutes living behavior. Indeed, whether we want to synthesize
life or merely simulate a particular behavior of living organisms, we need investigate the rules that allow us
to distinguish life from non-life . Only by establishing an artificial physics, from which an artificial biology
can emerge, and a theory, or set of rules, distinguishing the two, can we aim at a proper science based on fact.
In other words, the methodology of Artificial Life requires existing theories of life to be compared against;
it can also contribute to the meta-methodology of Biology by allowing us to test and improve its theories
beyond the unavoidable material constraints, such as the incomplete fossil record or measurement of cellular
activity. Naturally, the requirements for hard AL are much stricter, as we are not merely interested in
behaviors that can be compared to real biological systems with looser or stricter rules, but the actual
realization of an artificial organization that must be agreed to be living against some theory. Soft AL, may
restrict itself to particular behavioral traits which need only to be simulated to a satisfactory degree.
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Simulations, Realizations, Systemhood, Thinghood, and Theories of Life

“Boids are not birds; they are not even remotely like birds; they have no cohesive physical structure, but rather exist
as information structures — processes — within a computer. But — and this is the critical ‘but’— at the level of
behaviors, flocking Boids and flocking birds are two instances of the same phenomenon: flocking. [...] The
‘artificial’ in Artificial Life refers to the component parts, not the emergent processes. If the component parts are
implemented correctly, the processes they support are genuine — every bit as genuine as the natural processes they
imitate. [...] Artificial Life will therefore be genuine life —it will simply be made of different stuff than the life that
has evolved on Earth.” [Langton, 1989, pp. 32-33]

“Simulations and realizations belong to different categories of modeling. Simulations are metaphorical models that
symbolically ‘stand for’ something else. Realizations are literal, material models that implement functions.
Therefore, accuracy in a simulation need have no relation to quality of function in a realization. Secondly, the
criteria for good simulations and realizations of a system depend on our theory of the system. The criteria for good
theories depend on more than mimicry, e.g., Turing Tests.” [Pattee, 1989, page 63]

As Pattee points out, the bottom line is that a simulation, no matter how good it is, is not a realization.
Nonetheless, it may still be possible to obtain artificial living organisms (realizations) if, from an artificial
environment, we are able to generate, in a bottom-up manner, organizations which conform to some theory
of life we wish to test. Howard Pattee [1989] has proposed that if emergent artificial organisms are able to
perform measurements, or in other words, categorize their (artificial) environment, then they may be
considered realizations. Some claim that computational environments do not allow for this creative form of
emergence [see Cariani, 1992; Moreno, et all, 1994]. In any case, whatever artificial environment we may
use, computational or material, we need a theory allowing us to distinguish life from non-life.

Related to this issue, and in the context of complex systems science, is the search of those properties of the
world which can be abstracted from their specific material substrate: systemhood from thinghood. Systems
science is concerned with the study of systemhood properties, but there may be systems from which
systemhood cannot be completely abstracted from thinghood. Life is sometimes proposed as one of those
systems [see Rosen, 1986, 1991; Moreno et al, 1994; Pattee, 1995]. The difficulty for systems science, or
complexity theory, lies precisely in the choice of the appropriate level of abstraction. If we abstract enough,
most things will look alike, leading to a theory of factless, reminiscent analogies, exposed by Cowan and
Maynard-Smith above. If, on the other hand,  we abstract too little, all fields of inquiry tend to fall into
increasingly specific niches, accumulating much data and knowledge about (context-specific) components
without much understanding of, or ability to control, the (general) macro-level organization. In the context
of life, we do not want to be tied uniquely to carbon-based life, or life-as-we-know-it, but we also do not want
life-as-could-be to be anything at all. The challenge lies precisely on finding the right amounts of systemhood
and thinghood, as well as the interactions between the two, necessary for a good theory of life, real or
artificial.

Further Readings and References

Cariani, P. [1992], “Emergence and Artificial Life” In Artificial Life II. C. Langton (Ed.). Addison-Wesley. pp. 775-797.
de Castro, L. N. & Von Zuben, F. J. (eds.) [2005].  Recent Developments in Biologically Inspired Computing. Idea

Group Publishing.
Dennet, D.C. [2005]. "Show me the Science". New York Times, August 28, 2005
Langton, C. [1989], “Artificial Life” In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.
Klir, G. [1991], Facets of Systems Science. Plenum Press. (On Constructivism pp. 12-13)
Moreno, A., A. Etxeberria, and J. Umerez [1994], “Universality Without Matter?”. In Artificial Life IV, R. Brooks and

P. Maes (Eds). MIT Press. pp 406-410
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Pattee, H. [1989], “Simulations, Realizations, and Theories of Life”.  In Artificial Life. C. Langton (Ed.). Addison-
Wesley. pp. 63-77.

Pattee, H. [1995], “Artificial Life needs a real Epistemology”. In Advances in Artificial Life. F. Moran, A Moreno, J.J.
Merelo, P. Chacon (Eds.). Springer-Verlag. 

Rosen, R. [1986], “Some Comments on Systems and System Theory”. In Int. Journal of General Systems. Vol. 13, No.1.
Rosen, R. [1991]. Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life.  Columbia

University Press.
Segel, L.A. and I.C. Cohen [2001]. Design Principles for the Immune System and Other Distributed Autonomous

Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press.

For next lecture read:

Nunes de Castro,  Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications.
Chapman & Hall. Chapter 7, sections 7.1,  7.2 and 7.4.

Optional: Part  I of Flake’s [1998], The Computational Beauty of Life. MIT Press.
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3. Formalizing and Modeling the World

“When you can measure what you are speaking of and express it in numbers you know that on which
you are discoursing. But if you cannot measure it and express it in numbers. your knowledge is of a
very meagre and unsatisfactory kind.”. (Lord Kelvin)

The Nature of Information and Information Processes in Nature1

The word information derives from the Latin informare (in + formare), meaning to give form, shape, or
character to.  Etymologically, it is therefore understood to be the formative principle of something, or to
imbue with some specific character or quality.  However, for hundreds of years, the word information is used
to signify knowledge and aspects of cognition such as meaning, instruction, communication, representation,
signs, symbols, etc.  This can be clearly appreciated in the Oxford English Dictionary, which defines
information as “the action of informing; formation or molding of the mind or character, training, instruction,
teaching; communication of instructive knowledge”. 

When we look at the world and study reality, we see order and structure everywhere.  There is nothing that
escapes description or explanation, even in the natural sciences where phenomena appear sometimes
catastrophic, chaotic and stochastic.  A good example of order and information are our roads.  Information
can be delivered by signs.  Drivers know that signs are not distant things, but they are about distant things
in the road.  What signs deliver are not things but a sense or knowledge of things – a message.  For
information to work that way, there have to be signs. These are special objects whose function is to be about
other objects. The function of signs is reference rather than presence.  Thus a system of signs is crucial for
information to exist and be useful in a world, particularly for the world of drivers! 

The central structure of information is therefore a relation among signs, objects or things, and agents capable
of understanding (or decoding) the signs.  An AGENT is informed by a SIGN about some THING.  There
are many names for the three parts of this relation.  The AGENT can be thought of as the recipient of
information, the listener, reader, interpretant, spectator, investigator, computer, cell, etc.  The SIGN has been
called the signal, symbol, vehicle, or messenger.  And the about-some-THING is the message, the meaning,
the content, the news, the intelligence, or the information.

The SIGN-THING-AGENT relation is often understood as a sign-system, and the discipline that studies sign
systems is known as Semiotics. In addition to the triad of a sign-system, a complete understanding of
information requires the definition of the relevant context: an AGENT is informed by a SIGN about some
THING in a certain CONTEXT. Indeed, (Peircean) semiotics emphasizes the pragmatics of sign-systems,
in addition to the more well-known dimensions of syntax and semantics. Therefore, a complete (semiotic)
understanding of information studies these three dimensions of sign-systems:

1. Semantics: the content or meaning of the SIGN of a THING for an AGENT; it studies all aspects
of the relation between signs and objects for an agent, in other words, the study of meaning.
2. Syntax: the characteristics of signs and symbols devoid of meaning; it studies all aspects of the
relation among signs such as their rules of operation, production, storage, and manipulation.
3. Pragmatics: the context of signs and repercussions of sign-systems in an environment; it studies

1  This subsection is an excerpt of [Rocha and Schnell, 2005]
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how context influences the interpretation of signs and how well a signs-system represents some
aspect of the environment.

Signs carry information content to be delivered to agents. However, it is also useful to understand that some
signs are more easily used as referents than others. In the beginning of the 20th century, Charles Sanders
Peirce defined a typology of signs:

1. Icons are direct representations of objects. They are similar to the thing they represent. Examples
are pictorial road signs, scale models, and of course the icons on your computer. A footprint on the
sand is an icon of a foot.
2. Indices are indirect representations of objects, but necessarily related. Smoke is an index of fire,
the bell is an index of the tolling stroke, and a footprint is an index of a person. 
3. Symbols are arbitrary representations of objects, which require exclusively a social convention
to be understood. A road sign with a red circle and a white background denotes something which is
illegal because we have agreed on its arbitrary meaning. To emphasize the conventional aspect of the
semantics of symbols, consider the example of variations in road signs: in the US yellow diamond
signs denote cautionary warnings, whereas in Europe a red triangle over a white background is used
for the same purpose. We can see that convention establishes a code, agreed by a group of agents,
for understanding (decoding) the information contained in symbols. For instance, smoke is an index
of fire, but if we agree on an appropriate code (e.g. Morse code) we can use smoke signals to
communicate symbolically.

Clearly, signs may have iconic, symbolic and indexical elements. Our alphabet is completely symbolic, as
the sound assigned to each letter is purely conventional. But other writing systems such as Egyptian or Mayan
hieroglyphs, and some Chinese characters use a combination of phonetic symbols with icons and indices. Our
road signs are also a good example of signs with symbolic (numbers, letters and conventional shapes), iconic
(representations of people and animals) and indexical (crossing out bars) elements. 

Finally, it is important to note that due to the arbitrary nature of convention, symbols can be manipulated
without reference to content (syntactically). This feature of symbols is what enables computers to operate.
As an example of symbol manipulation without recourse to content, let us re-arrange the letters of a word,
say “deal”: dale, adel, dela, lead, adle, etc. We can produce all possible permutations (4! = 4×3×2×1 =
24) of the word whether they have meaning or not. After manipulation, we can choose which ones have
meaning (in some language), but that process is now a semantic one, whereas symbol manipulation is purely
syntactic. All signs rely on a certain amount of convention, as all signs have a pragmatic (social) dimension,
but symbols are the only signs which require exclusively a social convention, or code, to be understood.

We are used to think of information as pertaining purely to the human realm. In particular, the use of
symbolic information, as in our writing system, is thought of as technology used exclusively by humans.
Symbols, we have learned, rely on a code, or convention, between symbols and meanings. Such a
conventional relation usually specifies rules created by a human community. But it can have a more general
definition: 

“A code can be defined as a set of rules that establish a correspondence between two independent
worlds”. The Morse code, for example, connects certain combinations of dots and dashes with the letters
of the alphabet. The Highway Code is a liaison between illustrated signals and driving behaviours. A
language makes words stand for real objects of the physical World.” [Barbieri, 2003, page 94]
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We can thus think of a code as a process that implements correspondence rules between two independent
worlds (or classes of objects), by ascribing meaning to arbitrary symbols. Therefore, meaning is not a
characteristic of the individual symbols but a convention of the collection of producers and recipients of the
encoded information. 

Interestingly, we can see such processes in Nature, where the producers and recipients are not human. The
prime example is the genetic code, which establishes a correspondence between DNA (the symbolic genes
which store information) and proteins, the stuff life on Earth is built of. With very small variations, the
genetic code is the same for all life forms. In this sense, we can think of the genetic system and cellular
reproduction as a symbolic code whose convention is “accepted” by the collection of all life forms. 

Other codes exist in Nature, such as signal transduction from the surface of cells to the genetic system, neural
information processing, antigen recognition by antibodies in the immune system, etc. We can also think of
animal communication mechanisms, such as the ant pheromone trails, bird signals, etc. Unlike the genetic
system, however, most information processes in nature are of an analog rather than digital nature. Throughout
this course we will discuss several of these natural codes.

Formalizing Knowledge: Uncovering the Design Principles of Nature2

Once we create symbols, we can also hypothesize relationships among the symbols which we can later check
for consistency with what we really observe in the World. By creating relationships among the symbols of
things we observe in the World, we are in effect formalizing our knowledge of the World. By formalizing
we mean the creation of rules, such as verbal arguments and mathematical equations, which define how our
symbols relate to one another. In a formalism, the rules that manipulate symbols are independent of their
meaning in the sense that they can be calculated mechanically without worrying what symbols stand for. 

It is interesting to note that the ability to abstract characteristics of the world from the world itself took
thousands of years to be fully established. Even the concept of number, at first was not dissociated from the
items being counted. Indeed, several languages (e.g. Japanese) retain vestiges of this process, as different
objects are counted with different variations of names for numbers. Physics was the first science to construct
precise formal rules of the things in the world. Aristotle (484-322 BC) was the first to relate symbols more
explicitly to the external world and to successively clarify the nature of the symbol-world (symbol-matter)
relation. “In his Physics he proposed that the two main factors which determine an object's speed are its
weight and the density of the medium through which it travels. More importantly, he recognized that there
could be mathematical rules which could describe the relation between an object's weight, the medium's
density and the consequent rate of fall.” [Cariani, 1989, page 52] The rules he proposed to describe this
relations were:

1. For freely falling or freely rising bodies:  speed is proportional to the density of the medium.
2. In forced motion: speed is directly proportional to the force applied and inversely proportional
to the mass of the body moved

This was the first time that the relationships between observable quantities were hypothesized and used in
calculations.  Such a formalization of rules as a hypothesis to be tested is what a model is all about.
Knowledge is built upon models such as this that sustain our observations of the World.

2 This subsection is an excerpt of [Rocha and Schnell, 2005b]
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Figure 1: The Modeling Relation between knowledge and reality according to Hertz
(adapted from Cariani, 1989)

“While these quantities were expressed in terms of numbers, they were still generally regarded as inherent
properties of the objects themselves. It was not until Galileo took the interrelationships of the signs
themselves as the objects of study that we even see the beginnings of what was to be progressive
dissociation of the symbols from the objects represented. Galileo's insight was that the symbols
themselves and their interrelations could be studied mathematically quite apart from the relations in the
objects that they represented. This process of abstraction was further extended by Newton, who saw that
symbols arising from observation […] are distinct from those involved in representing the physical laws
which govern the subsequent motion”. [Cariani, 1989, page 52]

“In 1894 Heinrich Hertz published his Principles of Mechanics which attempted […] to purge mechanics of
metaphysical, mystical, undefined, unmeasured entities such as force and to base the theory explicitly on
measurable quantities. Hertz wanted to be as clear, rigorous, and concise as possible, so that implicit, and
perhaps unnecessary, concepts could be eliminated from physical theories, [which he thought should be based
solely on measurable quantities].” [Cariani, 1989, page 54]. Since the results of measurements are symbols,
physical theory should be about building relationships among observationally-derived symbols, that is, it
should be about building formal models, which Hertz called "images”:

“The most direct and in a sense the most important, problem which our conscious knowledge of
nature should enable us to solve is the anticipation of future events, so that we may arrange our
present affairs in accordance with such anticipation. As a basis for the solution of this problem we
always make use of our knowledge of events which have already occurred, obtained by chance
observation or by prearranged experiment. In endeavoring thus to draw inferences as to the future
from the past, we always adopt the following process. We form for ourselves images or symbols of
external objects; and the form which we give them is such that the necessary consequents of the
images in thought are always the images of the necessary consequents in nature of the things pictured.
In order that this requirement may be satisfied, there must be a certain conformity between nature and
our thought. Experience teaches us that the requirement can be satisfied, and hence that such a
conformity does in fact exist. When from our accumulated experiences we have succeeded in
deducing images of the desired nature, we can then in a short time develop by means of them, as by
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means of models, the consequences in the external world which only arise in a comparatively long
time, or as a result of our own interposition. We are thus enabled to be in advance of the facts, and to
decide as to present affairs in accordance with the insight so obtained. The images which we here
speak are of our conceptions of things. With the things themselves they are in conformity in one
important respect, namely, in satisfying the above mentioned requirement. For our purpose it is not
necessary that they should be in conformity with the things in any other respect whatever. As a matter
of fact, we do not know, nor do we have any means of knowing, whether our conceptions of things
are in conformity with them in any other than the one fundamental respect. [Hertz, 1894 pp. 1-2]”

A model is any complete and consistent set of verbal arguments, mathematical equations or computational
rules which is thought to correspond to some other entity, its prototype.  The prototype can be a physical,
biological, social psychological or other conceptual entity. 

The etymological roots of the word model lead us to the Latin word “modulus”, which refers to the act of
molding, and the Latin word  “modus” (a measure) which implies a change of scale in the representation of
an entity.  The idea of a change of scale, can be interpreted in different ways.  As the prototype of a physical,
social or natural object, a model represents a change on the scale of abstraction: certain particularities have
been removed and simplifications are made to derive a model.

In the natural sciences, models are used as tools for dealing with reality.  They are caricatures of the real
system specifically build to answer questions about it.  By capturing a small number of key elements and
leaving out numerous details, models help us to gain a better understanding of reality and the design
principles it entails.  

Computational Models3

“Insofar as the propositions of mathematics are certain they do not refer to reality; and insofar as
they refer to reality, they are not certain”. Albert Einstein

Computation is the ultimate abstraction of a formal mathematical system, or an axiomatic system. It is defined
by the purely syntactic process of mapping symbols to symbols. Such mapping is the basis of the concept of
mathematical function, and it is all that computers do. This abstraction requires that all the procedures to
manipulate symbols are defined by unambiguous rules that do not depend on physical implementation, space,
time, energy considerations or semantic interpretations given to symbols by observers. Formal computation
is, by definition, implementation-independent.

Modeling, however, is not entirely a formal process. The Hertzian modeling paradigm clearly relates formal,
computational models to measurements of reality against which they must be validated. The measuring
process transforms a physical interaction into a symbol – via a measuring device. The measuring process
cannot be formalized as it ultimately depends on interacting with a specific (not implementation-independent)
portion of reality. We can simulate a measurement process, but for that simulation to be a model we will need
in turn to relate it to reality via another measurement. This important aspect of modeling is often forgotten
in Artificial Life, when the results of simulations are interpreted without access to real world measurements.

3  This section is indebted to many writings of Howard Pattee, including lecture notes and personal communications.
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Likewise, a computer is a physical device that implements a particular abstract computational model as
precisely as possible. Modern day computers are so successful because they can implement general-purpose
computations almost independently of their specific physics. We do not have to worry about the specific
physical architecture of the device as we compute, even though small errors in our computations do occur due
to the physical elements of the computing device.

In summary, a computation is a process of rewriting symbol strings in a formal system according to a program
of rules. The following characteristics are important: (1) Operations and states are syntactic. (2) Symbols
follow syntactical rules. (3) Rate of computation is irrelevant. (4)Program determines result, not speed of
machine (Physical implementation is irrelevant).
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4. Self-Organization and Emergent Complex Behavior
Self-organization is usually understood  as the process by which systems of many components tend to reach
a particular state, a set of cycling states, or a small volume of their state space (attractor basins), with no
external interference. This attractor behavior is often recognized at a different level of observation as the
spontaneous formation of well-organized structures, patterns, or behaviors, from random initial conditions
(emergent behavior). The systems used to study this behavior are referred to as dynamical systems or state-
determined systems, since every trajectory is perfectly determined by its initial state.  Dynamical systems are
traditionally studied by continuous variables and sets of discrete-time difference equations (such as the
logistic map) or continuous-time differential equations (such as models of the motion of bodies under
gravitational forces). However,  self-organization  is  more easily studied computationally with discrete
dynamical systems (DDS) such as Boolean networks or cellular automata. 

The state-determined transition rules of DDS are interpreted as the laws of some physical system [Langton,
1986] where the state of each component depends on the states of its neighbor (or related) components at the
previous time instance.  DDS possess a large number of components or variables, and thus very large state
spaces. However, when started with random initial conditions (note: not from special initial conditions) they
tend to converge, or self-organize, into small sets of attractor states in this space. Attractors may be chaotic
in which case the emergent behavior is sensitive to initial conditions. But even chaotic attractors  tend to be
restricted to small volumes of their state-space (e.g. chaotic in a subset of dimensions of the state-space),
therefore we still consider the convergence of a dynamical system into a chaotic basin of attraction to be a
form of self-organization. 

Since material systems are accurately modeled by dynamical systems, it follows from the observed attractor
behavior [Wuensche and Lesser, 1992] of these systems that there is a propensity for matter to self-organize
(e.g., [Kauffmann, 1992]). In this sense, matter is described by the (micro-level) dynamics of state transitions
and the observed (emergent or macro-level) attractor behavior of self-organization. In general, attractors
manifest or emerge as global patterns that involve many of components of the dynamical system, and are not
easily describable in terms of  their state-determined transition rules.  For instance, the simple transition rules
of the automata in Conway's Game of Life cannot describe what the emergent patterns of "blinkers" and
"gliders" are.  These emergent  patterns pertain to a different, complementary level of observation of the same
system [Pattee, 1978]. The process of self-organization is often interpreted as the evolution of order from
random initial conditions. However, notice that this evolution is limited to the specific attractor landscape of
a given dynamical system. Unless its parameters are changed (structural perturbation), no dynamical system
can escape its own attractor landscape. This limitation will become more apparent when we approach the
problem of self-replication.

Life on the Edge of Chaos?

Another interesting aspect of the behavior of dynamical systems concerns the concept of bifurcation or phase
transition. When the parameters of a dynamic system are changed gradually its trajectories and attractors
typically change gradually, however, for certain parameter values sudden changes in the dynamic behavior
can occur. It is at this critical point that complicated spatio-temporal organization may occur (e.g. from a
steady-state to a limit cycle attractor). Close to bifurcations the system also becomes increasingly more
sensitive to parameter and initial condition changes. It is often proposed that bifurcations offer a selection
mechanism [Prigogine, 1985], as a dynamical system may respond very differently to very small changes in
their parameters.
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However, if the parameter space is divided by many bifurcations, the system becomes increasingly sensitive
to initial conditions and small parameter changes; in this sense its behavior becomes chaotic. It has been
argued that the most useful behavior lies instead in between full order and chaos. Langton [1990, 1992] has
shown (for one-dimensional cellular automata) that it is in this range of behavior that dynamical systems can
carry the most complicated “computations”. Computation here is used in a loose sense—not as the rate-
independent, symbolic manipulation of Turing-machines—meaning that information exchange between
elements of these systems is maximized in this range. In other words, Langton showed that the highest
correlation among the automata in a cellular lattice occur at this stage.

Kauffman [1993,] likewise hypothesized that “living systems exist in the [ordered] regime near the edge of
chaos, and natural selection achieves and sustains such a poised state”. This hypothesis is based on Packard’s
[1988] work showing that when natural selection algorithms are applied to dynamical systems, with the goal
of achieving higher discriminative power, the parameters are changed generally to lead these systems into
this transitional area between order and chaos. This idea is very intuitive, since chaotic dynamical systems
are too sensitive to parameter changes, that is, a single perturbation or mutation (structural perturbation) leads
the system into another completely different behavior (sensitive to damage). By contrast, ordered systems are
more resilient to damage, and a small parameter change will usually result in a small behavior change which
is ideal for smooth adaptation. However, even though very ordered systems can adapt by accumulation of
useful successful variations (because damage does not propagate widely), they may not be able ‘step out’ of
their particular organization in the presence of novel demands in their environment. 

It is here that systems at the edge of chaos were thought to enter the scene; they are not as sensitive to damage
as chaotic systems, but still they are more sensitive than fully ordered systems.  Thus, most mutations cause
only minor structural changes and can accumulate, while a few others may cause major changes in the
dynamics enabling a few dramatic changes in behavior. These characteristics of simultaneous mutation
buffering (to small changes) and dramatic alteration of behavior (in response to larger changes) is ideal for
evolvability [Conrad, 1983, 1990]. However, many of the real gene networks that have been successfully
modeled with dynamical systems (e.g.  the network of segment polarity genes in Drosophila melanogaster
[Albert and Othmer, 2003]), exist in a very ordered regime, being very robust to structural changes [Chaves,
Albert and Sontag, 2005; Willadsen&Wiles, 2007; kauffman et al, 2003]. Still, other genetic regulatory
network models do operate close to criticality [Balleza et al, 2008]. It appears that evolution favors ordered,
very robust regimes of self-organization in gene networks – at least the ones involved in very conserved
regulatory pathways  – though there is also evidence of near-critical regimes for increased evolvability.

Complex Self-organization

We have studied several computational systems said to be self-organizing in the sense described above. The
discrete logistic equation observes several ranges of ordered behavior according to its parameter r. For r #
3, the system converges to a single point steady state (independently of its initial value). For 3 # r # 4 the
system enters a series of bifurcations, meaning that it changes its attractor behavior, first from a steady-state
into a two-state limit cycle, and then progressively doubling the number of states in an attractor limit cycle
as r increases. Close to r = 4, the limit cycle becomes chaotic. That is, in the chaotic range, the slightest
change in the initial value, will lead to a completely different trajectory (though similarly chaotic). The
system goes from being independent to strongly dependent of initial conditions, though, in each range, the
attractor behavior of the equation is the same for random initial conditions. Thus, we can see the logistic
equation as self-organizing.
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But there is another aspect of the logistic equation that should be understood. In all of its ranges of behavior,
from full order to full chaos, the system is (fairly) reversible. That is, I can always obtain a specific initial
condition which caused some behavior, by formally running the system backwards. This means the system
is deterministic in both temporal directions. Formally, this means the state transition function is invertible.
(This is actually only true, if we decide to work on the lower half of its state space, since the logistic equation
is a quadratic function, it has always two possible solutions for the previous value of the current state, these
values are symmetric about the middle point of its state space). Some, resist calling this kind of reversible
systems self-organizing because they are not sufficiently complex. They reason that if a system is self-
organizing, when ran backwards it should be self-disorganizing, that is, it should lead to random initial
conditions, or to an incomplete knowledge of possible initial states.  Indeed, complexity is typically equated
with the inability to describe the behavior of a system from the behavior of its components or predecessors.
This way, we ought to reserve the term self-organization to those irreversible systems whose behaviors must
be evaluated statistically. The logistic map shows “hints” of this backwards self-disorganization, but we can
still work out effectively its backwards trajectory to an initial condition by restricting the quadratic solutions
to half of its state space.

Random Boolean Networks are much more complicated than this. They are completely deterministic since
a certain state will always lead to the same next state (state-determinacy), however, we cannot usually know
exactly what the predecessor of a current state was. Systems like this are usually studied with statistical tools.
Even though the rules that dictate the next state of its components are simple and deterministic, the overall
behavior of the system is generally too complicated to predict and statistical analysis has to be performed.
For instance, Kauffman has shown that when K=2 (number of inputs to each node), his networks will have
on average  basins of attraction with a length of  states; if the output of one node is switched to the
other boolean value (perturbation), the trajectory returns to that cycle 85% of the time, while on the remaining
15% of the time it will “jump” into a different basin of attraction. Cellular automata (CA) fall into this same
category of deterministic, irreversible, self-organization.
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5. Reality is Stranger than Fiction
Updated from a presentation in the “Biocomplexity” discussion section at the 9th European Conference on
Artificial Life, September 12, 2007 in Lisbon, Portugal

What can Artificial Life do about Advances in Biology?

“By extending the empirical foundation upon which biology is based beyond the carbon-chain life
that has evolved on Earth, Artificial Life can contribute to theoretical biology by locating life-as-we-
know-it within the larger picture of life-as-it-could-be”. [Langton, 1998, page 1]

From Langton’s original artificial life manifesto, the field was largely expected to free us from the confines
of “life-as-we-know-it” and its specific biochemistry. The idea of “life-as-it-could-be” gave us a scientific
methodology to consider and study the general principles of life at large. The main assumption of the field 
was that instead of focusing on the carbon-based, living organization, life could be better explained by
synthesizing its “logical forms” from simple machines [Langton, 1989, page 11]—where, “fictional”
machines substituted real biochemistry. The expectation was that this  “out-of-the-box”, synthetic
methodology would gain us a wider scientific understanding of life. We would be able to entertain alternative
scenarios for life, challenge the dogmas of biology, and ultimately discover the design principles of life.

Interestingly, during the 20 years since the first artificial life workshop,  biology witnessed tremendous
advances in our understanding of life. True,  biology operates at a completely different scale of funding and
in a much larger community base than artificial life (the impact factors of key journals in both fields differ
by an order of magnitude). But, still, it is from biology, not artificial life, that the strangest and most exciting
discoveries and design principles of life arise today. Consider looking at the [September 6, 2007] number of
Nature, with the quite apropos editorial title “Life as We Know it” [Vol. 449, 1], arguing for a comparative
genomics approach, with articles, for instance, moving towards evolutionary principles of gene duplication
[Wapinski et al, 2007]. Publications in the [September 2007 issue of] PLoS. Biol., also presented new
evidence towards updating or discovering general principles of life: for instance, Venter’s sequencing of his
diploid genome, which updates our expectations of differences in chromosome pairs [Levy et al, 2007]), and 
the Ahituv et al [2007] study that challenges the idea that utraconserved DNA (across species) must be
functional. Since then, many advances, often enabled by big data approaches of computational biology, keep
being discovered; for instance, from large-scale comparative genomics, it has been found that retroviral
genomic sequences account for 6 to 14% of host genomes—-8% of human DNA is from endogenous
retroviruses, which comprises more DNA than the human proteome [Weiss & Stoye, 2013].

It is good to notice that this sort of work is not so much an exception, but has been a signature of research in
the biosciences in the last couple of decades. Consider cases such as the discovery of DNA transfer from
bacteria to the fly [Dunning Hotopp, 2007], extra-genomic inheritance in Arabidopsis [Lolle et al, 2005], or
the profound importance of non-coding RNA in life which is a major player in, among other features,
patterning [Martello et al, 2007] , essential gene regulation  [Mattick, 2005],  development [Mattick, 2007],
epigenetic neural development and modulation [Mehler & Mattick, 2007; Mattick & Mehler, 2008],
eukariotic complexity [Taft et al, 2007], etc.  Moreover,  advances such as these do not seem to be mere
epiphenomena of a specific life form. Indeed, they point at important organization principles—as those that
artificial life was supposed to provide. When we discover that non-transcribed RNA is involved in extra-
genomic inheritance or that most of the evolutionary innovation responsible for differences between
marsupials and placental mammals occurs in non-protein coding DNA [Mikkelsen et al, 2007], some
fundamental principles of the living organization are to be re-thought: the simple, generalized genotype-
phenotype mappings on which most of artificial life is based on, are just not enough to capture the principles



of life as we know it. More intricate genomic structure, and its principles, need to be modeled and theories
need to be built to understand life.

One could go on and on about many other advances in biology. We can also point to themes at the forefront
of (bio)complexity theory that go largely overlooked in artificial life—though not completely (i.e. [Calabretta
et al, 2000; Hintze & Adami, 2007]). Perhaps the key topic in complexity theory today is that of modularity
in evolution [Schlosser & Wagner, 2004 ] and in networks [Newman, 2006; Guimerà et al 2007].
Nonetheless, looking at the papers accepted for the main sections of the latest Alife and ECAL conferences,
it is easy to see that most papers, not only do not discover or even address such issues, but largely trade in
biological and computational concepts that have not changed much since the field’s inception (see list of top
themes and terms in appendix). Is artificial life trapped in the (evolutionary) biology of twenty years ago?
Why is reality stranger and more surprising than fiction?

Clearly, there has been very widely successful artificial life research. First and foremost, artificial life  has
been most successful as a means to study animal behavior, learning and cognition. Certainly, evolutionary
robotics and embodied cognition have had an impact in cognitive science. But is artificial life simply a better
way to do artificial intelligence? Moreover, one could argue that given the embodied nature of evolutionary
robotics, it would seem that it is bound to some kind of material reality, rather than synthesized by constituent
“logical forms” as Langton initially suggested. 

But what to do about the organization of life itself? Surely the idea of explaining the living organization was
behind the origin of the field. For the purposes of this discussion,  we must question ourselves why artificial
life does not produce more and surprising results about the living organization? Certainly, there is sound
research in the field with impact outside of it [e.g. Adami, 2006; Hintze & Adami, 2007].  But even the most
successful research in artificial life rarely goes beyond showing that artificial organisms can observe the same
behaviors as their real counterparts (i.e. selective pressures, epistasis, etc.).  A problem for the field is that
as biotechnology gains more and more control of cellular processes, it is reasonable to ask what can one do
with artificial organisms that one cannot do with real bacteria? For instance, recent studies of the evolutionary
speed towards beneficial mutations were quite effectively done with E-coli [Perfeito et al, 2007], pointing
to a much larger rate of beneficial mutations in bacteria than previously thought, and shedding new light on
the general principal of clonal interference.

The point of this short statement is to discuss at this conference [ECAL 2007], how biocomplexity is dealt
within artificial life, twenty years after the field’s inception.  Certainly the community can think of a variety
of responses to this lack of new principles of life coming out of research in artificial life—even in theoretical
biology. One concept that I venture may need updating in artificial life is its view of the genotype/phenotype
relationship. Langton proposed that we generalize this relationship, but this meant that research in the field
largely regarded the two as indistinguishable. While this move at fist glance seems appropriate to deal with
the complexity of genomic-proteomic interaction, it prevents us from studying the specific roles each plays
in the living organization. Genotype and phenotype are intertwined in a complex manner, but each operates
under different principles that are often overlooked in artificial life. Thus, artificial life rarely approaches
issues of genomic structure and regulation, or the co-existence of DNA and RNA as different types of 
informational carriers. This could well be because artificial life models seem to trade most often on the
concept of Mendelian gene than on the molecular biology gene. In other words, artificial life models tend to
regard genes  solely as mechanisms of generational (vertical) inheritance, rather than as (informational)
mechanisms of ontogenetic (horizontal) development, regulation, maintenance, phenotypic plasticity, and 
response to environmental change. This way, most artificial life models do not test, or even deal with,
possible genomic structure architectures and their impact on development and evolution. This is a big
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shortcoming in the field since, as we have seen in the last two decades, the molecular biology gene and the
genomic structure it implies are behind many essential principles of life—from hypersomatic mutation in
vertebrate immunity to speciation.

Additionally, it is most often the case that artificial organisms in artificial life models are designed with many
top-down features, rather than emerging out of artificial biochemical machines. For instance, typically the
genes of artificial organisms encode pre-defined  computer operations. Not only is the encoding pre-defined,
but the function of individual genes is also pre-programmed, rather than emergent from some artificial
chemistry—what is typically emergent is the behavior of a collection of  such “atomic” genes and genotypes.

It is interesting to note that when biologists were looking for the location of genetic information for
inheritance, they naturally assumed that it would reside in proteins. They knew of DNA chemically, but its
sheer inertness deemed it unfit for the job. It took some time to realize that relative inertness was really the
point--- from Griffith’s experiment in 1928 to Avery’s in 1944, the implications of which were only fully
accepted much later , probably costing Avery a deserved Nobel [Judson, 2003]. This episode illustrates how
reality very often surprises the best scientific expectations of the day—a big problem for Artificial Life, as
long as it defines itself as the study of life-as-it-could-be, since it implies a science built on what scientists
think life is and not on what experiments show it is. For instance, the biochemical difference between highly
inert memory molecules and highly reactive, functional ones, while often overlooked in artificial life as a
design principle, is ultimately the hallmark of life [Rocha and Hordijk, 2005; Brenner, 2012]. Indeed,
Venter’s achievement in successfully replicating a living cell with a “prosthetic genome” until the original
organism’s phenotype is fully re-programmed (see chapter 1), should lead Artificial Life scientists to ponder
at least the question of what is it about life’s design principle that makes it easier to synthesize a working
prosthetic genome than a working “prosthetic” proteome or metabolome? Perhaps, Langton’s view of
artificial life being built-up from simple machines, may have clouded the fact that life as we know it is made
of biochemical constituents with very different chemical and functional roles: chiefly,  DNA (long-term,
random-access memory), RNA (short-term memory and symbol processing)  and proteins (functional
machines).  Perhaps more attention should be directed  to the “logical forms” of these lower level, structural
constituents that produce life, before we can tackle “life-as-it-could-be”.
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Top themes extracted from all abstracts accepted to ECAL 2007, produced the
Leximancer (courtesy of Janet Wiles) 
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Top Themes produced from Leximancer set at 65% coverage themes (courtesy of Janet
Wiles)

Top co-occurring (stemmed) word pairs in abstracts

neural--network
chang--environ
artifici--life
simul--result
autonom--robot
evolutionari--algorithm
evolutionari--robot
comput--simul
genet--algorithm
robot--mobil
cellular--automata
interact--between
artifici--chemistri
agent--adapt
pressur--select
neural--control
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6. Von Neumann and Natural Selection
“Turing invented the stored-program computer, and von Neumann showed that the description is
separate from the universal constructor. This is not trivial. Physicist Erwin Schrödinger confused the
program and the constructor in his 1944 book What is Life?, in which he saw chromosomes as
“architect's plan and builder's craft in one”. This is wrong. The code script contains only a description
of the executive function, not the function itself.” [Brenner, 2012]

6.1 Von Neumann’s Self-Reproduction Scheme

Von Neumann thought of his logical model of self-
reproduction as an answer to the observation that,
unlike machines, biological organisms have the
ability to self-replicate while seemingly increasing
their complexity without limit. Mechanical
artefacts are instead produced via more
complicated factories (as opposed to self-
production) and can only degenerate in their
complexity. He was searching for a complexity
threshold beyond which systems may self-
reproduce (with no outside control) while possibly
increasing their complexity. 

Von Neumann concluded that this threshold entails
a memory-stored description Φ(X) that can be
interpreted by a universal constructor automaton 
A to produce any automaton X; if a description of
A, Φ(A), is fed to A itself, then a new copy of A is

obtained. However, to avoid a logical paradox of self-reference, the description, which cannot describe itself,
must be both copied (uninterpreted role) and translated (interpreted role) into the described automaton. This
way, in addition to the universal constructor, an automaton B capable of copying any description, Φ(X),  is
included in the self-replication scheme. A third automaton C is also included to perform all the manipulation
of descriptions necessary—a sort of operating system. To sum it up, the self-replicating system contains the
set of automata (A + B + C) and a description Φ(A + B + C); the description is fed to B which copies it three
times (assuming destruction of the original); one of these copies is then fed to A which produces another
automaton (A + B + C); the second copy is then handled separately to the new automaton which together with
this description is also able to self-reproduce; the third copy is kept so that the self-reproducing capability
may be maintained (it is also assumed that A destroys utilized descriptions). Notice that the description, or
program, is used in two different ways: it is both translated and copied. In the first role, it controls the
construction of an automaton by causing a sequence of activities (active role of description). In the second
role, it is simply copied (passive role of description). In other words, the interpreted description controls
construction, and the uninterpreted description is copied separately, passing along its stored information
(memory) to the next generation.  This parallels the horizontal and vertical transmission of genetic
information in biological organisms, which is all the more remarkable since Von Neumann proposed this
scheme before the structure of the DNA molecule was uncovered by Watson and Crick[1953]—though after
the Avery-MacLeod-McCarty [1944]  experiment which identified DNA has the carrier of genetic
information.
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“The concept of the gene as a symbolic representation of the organism–a code script–is a funda-
mental feature of the living world and must form the kernel of biological theory.” [Brenner, 2012]

The notion of description-based self-reproduction implies a language. A description must be cast on some
symbol system while it must also be implemented by some physical or a logical structure. When A interprets
a description to construct some automaton, a semantic code is utilized to map instructions into construction
commands to be performed. When B copies a description, only its syntactic aspects are replicated. Now, the
language of this semantic code presupposes a set of primitives (e.g. parts and processes) for which the
instructions are said to “stand for”. Descriptions are not universal insofar as they refer to these building blocks
which cannot be changed without altering the significance of the descriptions. The building blocks ultimately
produce the dynamics, behavior, and/or functionality of the overall  system, and may be material or
computational. In Biology, we can think of the genetic code as instantiating such a language. Genes are
descriptions that encode specific parts: amino acids chains. In a computational setting, parts are typically
logical operations, but they can also be, for example, the building blocks of neural networks coded by genetic
algorithms and L-Systems. Von Neumann [1966] (posthumously aided by Arthur Burks)  produced a
specification  of a universal constructor using a 29-state cellular automaton.  Implementations of this
automaton appeared only fairly recently [e.g. Pesavento, 1995, see Sipper, 1998]

6.2 Open-ended evolution and natural selection

“Biologists ask only three questions of a living organism: how does it work? How is it built? And
how did it get that way? They are problems embodied in the classical fields of physiology,
embryology and evolution. And at the core of everything are the tapes containing the descriptions
to build these special Turing machines.” [Brenner, 2012]

Perhaps the most important consequence of separate descriptions in Von Neumann’s self-reproduction
scheme (and Turing’s Tape)  is its opening the possibility for open-ended evolution  [Rocha, 1998; McMullin,
2000]. As Von Neumann [1966] discussed, if the description of the self-reproducing automata is changed
(mutated), in a way as to not affect the basic functioning of (A + B + C) then, the new automaton  (A + B +
C)` will be slightly different from its parent. Von Neumann used a new automaton D to be included in the
self-replicating organism, whose function does not disturb the basic performance of (A + B + C); if there is
a mutation in the D part of the description, say D`, then the system (A + B + C + D) + Φ(A + B + C + D`)
will produce (A + B + C + D`) + Φ(A + B + C + D`). Von Neumann [1966, page 86] further proposed that
non-trivial self-reproduction should include this “ability to undergo inheritable mutations as well as the ability
to make another organism like the original”, to distinguish it from “naive” self-reproduction like growing
crystals.

Notice that changes in (A + B + C + D) are not heritable, only changes in the description, Φ(A + B + C + D),
are inherited by the automaton’s offspring and are thus relevant for evolution. This ability to transmit
mutations (vertically) is precisely at the core of the principle of natural selection of modern Darwinism.
Through variation (mutation) populations of different organisms are produced; the statistical bias these
mutations impose on reproduction rates of organisms will create survival differentials (fitness) on the
population which define natural selection. In principle, if the language of description is rich enough, an
endless variety of organisms can be evolved:  open-ended evolution.

The evolvability of a self-reproducing system is dependent on the parts used by the semantic code. If the parts
are very simple, then the descriptions will have to be very complicated, whereas if the parts possess rich
dynamic properties, the descriptions can be simpler since they will take for granted a lot of the dynamics that
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otherwise would have to be specified. In the genetic system, genes do not have to specify the functional
characteristics of the proteins produced, but simply the string of amino acids that will produce that
functionality “for free” [Moreno et al, 1994]. Furthermore, there is a trade-off between programmability and
evolvability [Conrad, 1983, 1990] which grants some self-reproducing systems no evolutionary potential
whatsoever. When descriptions require high programmability they will be very sensitive to damage. Low
programmability grants self-reproducing systems the ability to change without destroying their own
organization, though it also reduces the space of possible evolvable configurations [Rocha, 2001]. 

Turing and Von Neumann were the first to correctly formalize the required inheritance mechanism behind
neo-Darwinian evolution by Natural Selection.  This understanding of the most fundamental design principle
of life, puts Turing and Von Neumann on the Parthenon of great thinkers in Biology, alongside Darwin and
Mendel. The dovetailing of computational thinking and biology, inherent in the cybernetics movement of
Turing, Von Neumann, Shannon, Wiener and others, emphasizes how (material) control of  symbolic
information is the hallmark of both computation and biocomplexity.

Further Readings and References:

Avery, Oswald T.; Colin M. MacLeod, Maclyn McCarty [1944]. "Studies on the Chemical Nature of the Substance
Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid
Fraction Isolated from Pneumococcus Type III". Journal of Experimental Medicine 79 (2): 137–158.

Brenner, S. [2012]. “Turing centenary: Life’s code script.” Nature 482 (7386): 461-461.
Conrad. M. [1983], Adpatability. Plenum Press.
Conrad, M. [1990], “The geometry of evolutions”. In BioSystems Vol. 24, pp. 61-81.
McMullin, B. [2000].  “John von Neumann and the Evolutionary Growth of Complexity: Looking Backwards, Looking

Forwards”. Artificial Life 6(4):347-361. 
Moreno, A., A. Etxeberria, and J. Umerez [1994], “Universality Without Matter?”. In Artificial Life IV, R. Brooks and

P. Maes (Eds). MIT Press. pp 406-410
Pesavento, U. [1995] An implementation of von Neumann's self-reproducing machine. Artificial Life 2(4):337-354. 
Rocha, L.M. [1998]."Selected Self-Organization and the Semiotics of Evolutionary Systems". In: Evolutionary Systems:

The Biological and Epistemological Perspectives on Selection and Self- Organization, . S. Salthe, G. Van de
Vijver, and M. Delpos (eds.). Kluwer, pp. 341-358.[2] 

Rocha, L.M. [2001]. "Evolution with material symbol systems". Biosystems. 60, pp. 95-121
Sipper, M. [1998].  “Fifty Years of Research on Self-replication: an Overview”.  Artificial Life, 4 (3), pp. 237-257. 
von Neumann, John [1966]. The Theory of Self-Reproducing Automata. Arthur Burks (Ed.) University of Illinois Press.
Watson Jd, Crick Fh [1953]. "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid". Nature 171

(4356): 737–8.

27



7. Modeling Evolution: Evolutionary Computation
“How does evolution produce increasingly fit organisms in environments which are highly uncertain for
individual organisms? How does an organism use its experience to modify its behavior in beneficial ways (i.e.
how does it learn or ‘adapt under sensory guidance’)? How can computers be programmed so that problem-
solving capabilities are built up by specifying ‘what is to be done’ rather than ‘how to do it’?” [Holland, 1975,
page 1]

These were some of the questions concerning John Holland when he thought of Genetic Algorithms (GA’s)
in the 1960's. All these questions were shown to be reducible to a problem of optimizing multi-parameter
functions. Nature’s “problem” is to create organisms that reproduce more (are more fit) in a particular
environment: the environment-organism coupling dictates the selective pressures, and the solutions to these
pressures are organisms themselves. In the language of optimization, the solutions to a particular problem
(say, an engineering problem), will be selected according to how well they solve that problem. GA’s are
inspired by natural selection as the solutions to our problem are not algebraically calculated, but rather found
by a population of solution alternatives which is altered in each time step of the algorithm in order to increase
the probability of having better solutions in the population. In other words, GA’s, or other Evolutionary
Strategies (ES) such as Evolutionary Programming (EP), explore the multi-parameter space of solution
alternatives for a particular problem, by means of a population of encoded strings (standing for alternatives)
which undergo variation (crossover and mutation) and are reproduced in a way as to lead the population to
ever more promising regions of this search space (selection) [Goldeberg, 1989; Mitchell, 1999; De Jong,
2006].

7.1 Evolutionary Strategies and Self-Organization

The underlying idea of computational ES is the separation of solutions for a particular problem (e.g. a
machine) from descriptions of those solutions (memory). GA’s work on these descriptions and not on the
solutions themselves, that is, variation is applied to descriptions, while the respective solutions are evaluated,
and the whole (description-solution) selected according to this evaluation. Such machine/description
separation follows von Neumann’s self-reproducing scheme (see chapter 6) which is able to increase the
complexity of the (organization of) machines described. Therefore, the form of organization evolved by GA’s
is not self-organizing in the sense of a boolean network or cellular automata (see chapter 4). Even though the
solutions are obtained from the interaction of a population of elements, and in this sense following the general
rules usually observed by computationally emergent systems  (e.g. Langton [1988], Mitchell [1992]), they
do not self-organize since they rely on the selective pressures of some environment (in ES, defined by an
explicit or implicit fitness function). The order so attained is not a result of the internal dynamics of a
collection of interacting elements, but is instead dictated by the external selection criteria. In this sense, ES
follow an organizing scheme that is driven by external selection of encoded symbolic descriptions (a “Turing
tape” ). It is perhaps useful to think that ES are modeling the most fundamental design principle of biological
systems: natural selection. While self-organizing systems model the dynamical characteristics of matter,  ES
model the existence of, external,  selective pressures on populations of symbolic descriptions of some system.
While self-organization models material dynamics, ES models the selection of information about dynamics.

7.2 Development and morphogenesis: self-organization and selection come together

Since the original introduction of GA’s, many subsequent developments had to do with the inclusion of a
developmental stage, or intermediate layers between genotype and phenotype; in other words, the creation
of some artificial morphogenesis or regulation. The idea has been to encode rules that will themselves self-
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organize to produce a phenotype, rather than the direct encoding of the phenotype itself, or the introduction
of gene regulation . As discussed in class, these rules often use L-System grammars which dictate production
system programs [Wilson, 1988] leading to some phenotype. The most important advantage of this
intermediate stage, as explored by Kitano [1990], Gruau [1993], Belew [1992] and others, is the ability to
code for much larger structures than a direct encoding allows. In practical terms, they have solved some of
the scalability problems of encoding (e.g.) neural networks in GA’s, by reducing the search space
dramatically.

L-system grammars are higher-level descriptions of self-organizing developmental processes. However, these
first approaches used solely context-free, state-determined, L-System grammars, compromising  epistasis (or
mutual, non-linear, influence of genetic descriptions amongst each other) in the simulation of self-organizing
development. Dellaert and Beer [1994] and Kitano [1994], for instance, used Boolean networks to simulate
genetic epistasis and self-organization. In other words, the GA encodes rules which construct Boolean
networks whose nodes stand for aspects of the phenotypes we wish to evolve on some physical simulation.
In Dellaert and Beer’s model, the nodes stand for cell mitosis and other characteristics. This way, the
solutions of the GA are self-organizing systems whose attractor behavior dictates pre-defined phenotypic
traits.

These approaches in effect offer an emergent morphology, that is, they encode rules which will themselves
self-organize into some phenotype (instead of strict programming of morphology). The indirect encoding
further allows the search to occur in a reduced space, amplified through development. An interesting side
effect has to do with the appearance of modularity traits on the evolved phenotypes [Wagner, 1995].
Subsequent developments paid even more attention to the contextual regulation that indirect encodings afford
to the search  [Rocha 1995, 1997]. More recently, given our expanded view of genomics, other intermediate
layers between genotype and phenotype have been explored, such as transcription regulation [Reil, 1999;
Hallinan & Wiles, 2004] and RNA Editing [Rocha et al, 2006]. The inclusion of more sophisticated regulation
of genetic information prior to translation, while not necessarily including a self-organizing component,
allows us to model a much more realistic genotype/phenotype/environment interaction. Instead of genotypes
used exclusively for Mendelian inheritance (see chapter 5) of (directly encoded) phenotypic traits, ES with
genotype regulation allow us to model the contextual, plastic development of phenotypes we have come to
understand via modern Genomics—thus also learning additional design principles for bio-inspired
computation  [Huang et al, 2007].

The most important aspect of GA’s with emergent morphologies is the utilization in the same model of an
external selection engine (the GA) coupled to a particular self-organizing dynamics (e.g. Boolean networks)
standing for some materiality. Such schemes bring together, computationally, the two most important aspects
of evolutionary systems: self-organization and selection. These models belong to a category of self-
organization referred to as Selected Self-Organization which is based on symbolic memory [Rocha, 1996,
1997, 1998]. Selected Self-Organization with distributed memory is also possible in autocatalytic structures,
though its evolutionary potential is much smaller than the local memory kind [Rocha, 2001][Vasas, 2010].
The reason lies in Von Neumann’s notion of self-reproduction (see chapter 6). The introduction of symbolic
descriptions allows a much more sophisticated form of communication: structures are constructed from static
descriptions and do not have to reproduce through some complicated, and limited process of self-inspection.
In other words, separate descriptions can be used to reliably construct any kind of structure in an open-ended
manner, while self-inspection relies on only those structures that happen to be able to make copies of
themselves. As an example, a non-genetic protein-based life form, would have to rely only on those proteins
that could make direct copies of themselves [Rocha,  2001].
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Abstract
Researchers in many fields are faced with
computational problems in which a great number of
solutions are possible and finding an optimal or even a
sufficiently good one is difficult.  A variety of search
techniques have been developed for exploring such
problem spaces, and a promising approach has been the
use of algorithms based upon the principles of natural
evolution.  This tutorial will introduce the basic
principles underlying most evolutionary algorithms, as
well as some of the key details of the four most popular
methods: genetic algorithms, genetic programming,
evolutionary strategies, and evolutionary programming.
The aim of the tutorial is to introduce the participants to
the jargon and principles of the field of evolutionary
computation, and to encourage the participants to
consider the potential of applying evolutionary
optimization techniques in their own research.

1. Introduction
An important area in current research is the

development and application of search techniques based
upon the principles of natural evolution.  Most readers,
through the popular literature and typical Western
educational experience, are probably aware of the basic
concepts of evolution.  In particular, the principle of the
‘survival of the fittest’ proposed by Charles Darwin
(1859) has especially captured the popular imagination.
We shall use this as a starting point in introducing
evolutionary computation.

The theory of natural selection proposes that the
plants and animals that exist today are the result of
millions of years of adaptation to the demands of the
environment.  At any given time, a number of different
organisms may co-exist and compete for the same
resources in an ecosystem.  The organisms that are most
capable of acquiring resources and successfully
procreating are the ones whose descendants will tend to
be numerous in the future.  Organisms that are less
capable, for whatever reason, will tend to have few or
no descendants in the future.  The former are said to be
more fit than the latter, and the distinguishing
characteristics that caused the former to be more fit are
said to be selected for over the characteristics of the
latter.  Over time, the entire population of the ecosystem
is said to evolve to contain organisms that, on average,
are more fit than those of previous generations of the
population because they exhibit more of those
characteristics that tend to promote survival.

Evolutionary computation techniques abstract these
evolutionary principles into algorithms that may be used
to search for optimal solutions to a problem.  In a search
algorithm, a number of possible solutions to a problem
are available and the task is to find the best solution

possible in a fixed amount of time.  For a search space
with only a small number of possible solutions, all the
solutions can be examined in a reasonable amount of
time and the optimal one found.  This exhaustive
search, however, quickly becomes impractical as the
search space grows in size.  Traditional search
algorithms randomly sample (e.g., random walk) or
heuristically sample (e.g., gradient descent) the search
space one solution at a time in the hopes of finding the
optimal solution.  The key aspect distinguishing an
evolutionary search algorithm from such traditional
algorithms is that it is population-based.  Through the
adaptation of successive generations of a large number
of individuals, an evolutionary algorithm performs an
efficient directed search.  Evolutionary search is
generally better than random search and is not
susceptible to the hill-climbing behaviors of gradient-
based search.

2. Basic Evolutionary Computation
In an evolutionary algorithm, a representation

scheme is chosen by the researcher to define the set of
solutions that form the search space for the algorithm.
A number of individual solutions are created to form an
initial population.  The following steps are then
repeated iteratively until a solution has been found
which satisfies a pre-defined termination criterion.
Each individual is evaluated using a fitness function that
is specific to the problem being solved.  Based upon
their fitness values, a number of individuals are chosen
to be parents.  New individuals, or offspring, are
produced from those parents using reproduction
operators.  The fitness values of those offspring are
determined.  Finally, survivors are selected from the old
population and the offspring to form the new population
of the next generation.

The mechanisms determining which and how many
parents to select, how many offspring to create, and
which individuals will survive into the next generation
together represent a selection method.  Many different
selection methods have been proposed in the literature,
and they vary in complexity. Typically, though, most
selection methods ensure that the population of each
generation is the same size.

The remainder of the paper presents the traditional
definitions of the four most common evolutionary
algorithms: genetic algorithms (Holland, 1975), genetic
programming (Koza, 1992, 1994), evolutionary
strategies (Rechenberg, 1973), and evolutionary
programming (Fogel et al., 1966). The traditional
differences between the approaches involve the nature
of the representation schemes, the reproduction
operators, and the selection methods.

3. Genetic Algorithms



The most popular technique in evolutionary
computation research has been the genetic algorithm.
In the traditional genetic algorithm, the representation
used is a fixed-length bit string.  Each position in the
string is assumed to represent a particular feature of an
individual, and the value stored in that position
represents how that feature is expressed in the solution.
Usually, the string is “evaluated as a collection of
structural features of a solution that have little or no
interactions” (Angeline, 1996, p. 4).  The analogy may
be drawn directly to genes in biological organisms.
Each gene represents an entity that is structurally
independent of other genes.

Figure 1: Bit-String Crossover of Parents a & b
 to form Offspring c & d

Figure 2: Bit-Flipping Mutation of Parent a
 to form Offspring b

The main reproduction operator used is bit-string
crossover, in which two strings are used as parents and
new individuals are formed by swapping a sub-sequence
between the two strings (see Figure 1).  Another popular
operator is bit-flipping mutation, in which a single bit in
the string is flipped to form a new offspring string (see
Figure 2).  A variety of other operators have also been
developed, but are used less frequently (e.g., inversion,
in which a subsequence in the bit string is reversed).  A
primary distinction that may be made between the
various operators is whether or not they introduce any
new information into the population.  Crossover, for
example, does not while mutation does.  All operators
are also constrained to manipulate the string in a
manner consistent with the structural interpretation of
genes.  For example, two genes at the same location on
two strings may be swapped between parents, but not
combined based on their values.

Traditionally, individuals are selected to be parents
probabilistically based upon their fitness values, and the
offspring that are created replace the parents.  For
example, if N parents are selected, then N offspring are
generated which replace the parents in the next
generation.

4. Genetic Programming
An increasingly popular technique is that of genetic

programming.  In a standard genetic program, the
representation used is a variable-sized tree of functions
and values.  Each leaf in the tree is a label from an
available set of value labels.  Each internal node in the
tree is label from an available set of function labels.
The entire tree corresponds to a single function that may
be evaluated.  Typically, the tree is evaluated in a left-
most depth-first manner.  A leaf is evaluated as the
corresponding value. A function is evaluated using as
arguments the result of the evaluation of its children.

Genetic algorithms and genetic programming are
similar in most other respects, except that the
reproduction operators are tailored to a tree
representation.  The most commonly used operator is
subtree crossover, in which an entire subtree is swapped
between two parents (see Figure 3).  In a standard
genetic program, all values and functions are assumed
to return the same type, although functions may vary in
the number of arguments they take.  This closure
principle (Koza, 1994) allows any subtree to be
considered structurally on par with any other subtree,
and ensures that operators such as sub-tree crossover
will always produce legal offspring.
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Figure 3: Subtree Crossover of Parents a & b
 to form Offspring c & d

5. Evolutionary Strategies
In evolutionary strategies, the representation used

is a fixed-length real-valued vector.  As with the bit-
strings of genetic algorithms, each position in the vector
corresponds to a feature of the individual.  However,
the features are considered to be behavioral rather than
structural. “Consequently, arbitrary non-linear
interactions between features during evaluation are
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expected which forces a more holistic approach to
evolving solutions” (Angeline, 1996, p. 4).

The main reproduction operator in evolutionary
strategies is Gaussian mutation, in which a random
value from a Gaussian distribution is added to each
element of an individual’s vector to create a new
offspring (see Figure 4). Another operator that is used is
intermediate recombination, in which the vectors of two
parents are averaged together, element by element, to
form a new offspring (see Figure 5). The effects of
these operators reflect the behavioral as opposed to
structural interpretation of the representation since
knowledge of the values of vector elements is used to
derive new vector elements.

Figure 4: Gaussian Mutation of Parent a
to form Offspring b

Figure 5: Intermediate Recombination of Parents a & b
to form Offspring c

The selection of parents to form offspring is less
constrained than it is in genetic algorithms and genetic
programming.  For instance, due to the nature of the
representation, it is easy to average vectors from many
individuals to form a single offspring.  In a typical
evolutionary strategy, N parents are selected uniformly
randomly (i.e., not based upon fitness), more than N
offspring are generated through the use of
recombination, and then N survivors are selected
deterministically.  The survivors are chosen either from
the best N offspring (i.e., no parents survive) or from
the best N parents and offspring (Spears et al., 1993).

6. Evolutionary Programming
The representations used in evolutionary

programming are typically tailored to the problem
domain (Spears et al., 1993).  One representation
commonly used is a fixed-length real-valued vector.

The primary difference between evolutionary
programming and the previous approaches is that no
exchange of material between individuals in the
population is made.  Thus, only mutation operators are
used. For real-valued vector representations,
evolutionary programming is very similar to
evolutionary strategies without recombination.

A typical selection method is to select all the
individuals in the population to be the N parents, to
mutate each parent to form N offspring, and to
probabilistically select, based upon fitness, N survivors
from the total 2N individuals to form the next
generation.

7. Current Issues
In current research, the line distinguishing these

different approaches has started to blur.  Researchers in
each technique have begun to examine more complex
representation schemes and to apply a variety of
selection methods. Many genetic algorithm researchers
are examining the use variable-length representations
and analyzing how such representations grow in size
over the course of evolution (Wu & Lindsay, 1996).
Many genetic algorithms now use selection methods,
such as elitist recombination, in which parents compete
with their offspring for survival into the next generation
(Thierens, 1997). Some genetic programming
researchers have begun to examine the effects of
allowing multiple types of functions and values into the
representation.  The benefits of such strongly typed
genetic programming are only beginning to be explored
(Haynes et al., 1996).
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